首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.  相似文献   

2.
Zhou HH  Dai XN  Lin B  Mi H  Liu XL  Zhao FX  Zhang JJ  Zhou XT  Sun YH  Wei QP  Qu J  Guan MX 《遗传》2012,34(8):1031-1042
文章收集了7例携带线粒体tRNAAl。C5601T突变的中国Leber遗传性视神经病变(Leber’s hereditary opticneuropathy,LHON)的家系,通过眼科检查和遗传学分析,发现7个家系的外显率很低,分别为9.5%、14.3%、4.5%、8.3%、10.0%、22.2%和25.0%。用24对有部分重叠的引物对7个先证者线粒体DNA(Mitochondrial DNA,mtDNA)全序列进行扩增,并进行相关的分子生物学分析,结果发现这些家系均未携带G11778A、G3460A和T14484C这3个常见的原发突变位点,而在tRNAAla上发现了C5601T同质性突变,多态性位点分析分别属于东亚线粒体单体型G2、G2a1、G2a1、G2、G2b、G2a1、G2。C5601T突变位于线粒体tRNAAla的高度保守区(通用位点为59位),可能引起tRNA空间结构和稳定性发生改变,继而影响tRNA的代谢,导致线粒体蛋白和ATP合成障碍,最终导致视力损害。因此,tRNAAlaC5601T突变可能是与LHON相关的线粒体突变位点。同时低外显率提示其他因素(包括核修饰基因、环境因素)可能影响这7个中国C5601T突变家系的表型表达。  相似文献   

3.
Yu D  Jia X  Zhang AM  Li S  Zou Y  Zhang Q  Yao YG 《PloS one》2010,5(10):e13426

Background

Leber hereditary optic neuropathy (LHON, MIM 535000) is one of the most common mitochondrial genetic disorders caused by three primary mtDNA mutations (m.3460G>A, m.11778G>A and m. 14484T>C). The clinical expression of LHON is affected by many additional factors, e.g. mtDNA background, nuclear genes, and environmental factors. Hitherto, there is no comprehensive study of Chinese LHON patients with m.14484T>C.

Methodology/Principal Findings

In this study, we analyzed the mtDNA sequence variations and haplogroup distribution pattern of the largest number of Chinese LHON patients with m.14484T>C to date. We first determined the complete mtDNA sequences in eleven LHON probands with m.14484T>C, to discern the potentially pathogenic mutations that co-segregate with m.14484T>C. We then dissected the matrilineal structure of 52 patients with m.14484T>C (including 14 from unrelated families and 38 sporadic cases) and compared it with the reported Han Chinese from general populations. Complete mtDNA sequencing showed that the eleven matrilines belonged to nine haplogroups including Y2, C4a, M8a, M10a1a, G1a1, G2a1, G2b2, D5a2a1, and D5c. We did not identify putatively pathogenic mutation that was co-segregated with m.14484T>C in these lineages based on the evolutionary analysis. Compared with the reported Han Chinese from general populations, the LHON patients with m.14484T>C had significantly higher frequency of haplogroups C, G, M10, and Y, but a lower frequency of haplogroup F. Intriguingly, we also observed a lower prevalence of F lineages in LHON subjects with m.11778G>A in our previous study, suggesting that this haplogroup may enact similar role during the onset of LHON in the presence of m.14484T>C or m.11778G>A.

Conclusions/Significance

Our current study provided a comprehensive profile regarding the mtDNA variation and background of Chinese patients with LHON and m.14484T>C. Matrilineal background might affect the expression of LHON in Chinese patients with m.14484T>C.  相似文献   

4.
5.
Zhang S  Wang L  Hao Y  Wang P  Hao P  Yin K  Wang QK  Liu M 《Mitochondrion》2008,8(3):205-210
Leber's hereditary optic neuropathy (LHON) is a maternally inherited ocular disease which has been associated with three primary mitochondrial DNA mutations: G3640A, G11778A, and T14484C. In this study, we clinically characterized a Chinese family with complete penetrance of LHON. The patients in the family presented with variable clinical features. By direct DNA sequence analysis, we identified both T14484C mutation and a nearby T to C variant at nucleotide 14502 of mitochondria DNA. The T14502C variant altered I58 to V of the protein ND6, which was present in all patients of the family, but not in four unaffected family members and 200 normal controls. The co-existence of both T14484C mutation and T14502C substitution in all patients from the same LHON family suggests that T14502C may play a synergistic role with the primary mutation T14484C. The two variants together may account for the complete penetrance and absence of marked gender bias and visual recovery in the Chinese LHON family although we cannot exclude the possibility of simultaneous involvement of additional mitochondrial variant(s).  相似文献   

6.
We report the clinical and genetic characterization of a Chinese Leber′s hereditary optic neuropathy (LHON) family with complete penetrance and high percentage of recovery. Sequence analysis of the complete mitochondrial DNA revealed the presence of heteroplasmic ND6/T14484C mutation and 27 other variants, belonging to the East-Asian haplogroup B4b′d. Of those variants, a novel homoplasmic G10680A mutation substituted a threonine for a highly conserved alanine at ND4L amino acid 71, which was not found in unaffected family members and 100 normal controls. It indicated that G10680A may play a synergistic role with the primary mutation T14484C, leading to the complete penetrance of LHON in the presenting family. In addition, the other modifier factors including nuclear background, mitochondrial haplotypes and other environmental factors should account for the phenotypic variability of visual impairment in this family.  相似文献   

7.
Mitochondrial m.14484T>C (MT-ND6) mutation has been associated with Leber's hereditary optic neuropathy. Previous investigations revealed that the m.14484T>C mutation is a primary factor underlying the development of optic neuropathy but is not sufficient to produce a clinical phenotype. However, mitochondrial haplogroups have been proposed to modulate the phenotypic manifestation of the m.14484T>C mutation. Here, we performed the clinical, genetic evaluation and complete mitochondrial genome sequence analysis of 41 Han Chinese pedigrees carrying the m.14484T>C mutation. These families exhibited a wide range of penetrances and expressivities of optic neuropathy. The average ratio between affected male/female matrilineal relatives from 41 families was 2:1. The penetrance of optic neuropathy in these Chinese pedigrees ranged from 5.6% to 100%, with the average of 23.8%. Furthermore, the age-of-onset for optic neuropathy varied from 4 to 44 years, with the average of 19.3 years. Sequence analysis of their mitochondrial genomes identified distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups, indicating that the m.14484T>C mutation occurred through recurrent origins and founder events. We showed that mitochondrial haplogroups M9, M10 and N9 increased the penetrance of optic neuropathy in these Chinese families. In particular, these mitochondrial haplogroup specific variants: m.3394T>C (MT-ND1), m.14502T>C (MT-ND4) and m.14693A>G (MT-TE) enhanced the penetrance of visual loss in these Chinese families. These data provided the direct evidence that mitochondrial modifiers modulate the variable penetrance and expressivity of optic neuropathy among Chinese pedigrees carrying the m.14484T>C mutation.  相似文献   

8.
Leber''s hereditary optic neuropathy (LHON), the most frequent mitochondrial disease, is associated with mitochondrial DNA (mtDNA) point mutations affecting Complex I subunits, usually homoplasmic. This blinding disorder is characterized by incomplete penetrance, possibly related to several genetic modifying factors. We recently reported that increased mitochondrial biogenesis in unaffected mutation carriers is a compensatory mechanism, which reduces penetrance. Also, environmental factors such as cigarette smoking have been implicated as disease triggers. To investigate this issue further, we first assessed the relationship between cigarette smoke and mtDNA copy number in blood cells from large cohorts of LHON families, finding that smoking was significantly associated with the lowest mtDNA content in affected individuals. To unwrap the mechanism of tobacco toxicity in LHON, we exposed fibroblasts from affected individuals, unaffected mutation carriers and controls to cigarette smoke condensate (CSC). CSC decreased mtDNA copy number in all cells; moreover, it caused significant reduction of ATP level only in mutated cells including carriers. This implies that the bioenergetic compensation in carriers is hampered by exposure to smoke derivatives. We also observed that in untreated cells the level of carbonylated proteins was highest in affected individuals, whereas the level of several detoxifying enzymes was highest in carriers. Thus, carriers are particularly successful in reactive oxygen species (ROS) scavenging capacity. After CSC exposure, the amount of detoxifying enzymes increased in all cells, but carbonylated proteins increased only in LHON mutant cells, mostly from affected individuals. All considered, it appears that exposure to smoke derivatives has a more deleterious effect in affected individuals, whereas carriers are the most efficient in mitigating ROS rather than recovering bioenergetics. Therefore, the identification of genetic modifiers that modulate LHON penetrance must take into account also the exposure to environmental triggers such as tobacco smoke.Leber''s hereditary optic neuropathy (LHON) is among the most frequent mitochondrial diseases, affecting about 1 in 35 000–60 000 in Europe.1, 2 LHON is associated in over 90% of cases with one of three common mitochondrial DNA (mtDNA) point mutations affecting the Complex I subunit genes ND4 (m.11778G>A), ND1 (m.3460G>A) and ND6 (m.14484 T>C), usually occurring in homoplasmic fashion3, 4 (100% of mtDNA is mutant). This maternally inherited blinding disorder is caused by selective degeneration of retinal ganglion cells, particularly those originating the small axons composing the papillomacular bundle, which leads to optic atrophy.5, 6, 7 Clinically, a subacute loss of central vision develops in weeks/months, mostly affecting young adult men, with a peculiar pattern of fiber depletion8 and a relatively predictable natural history of visual function decline.9 Exceptions apply to age of onset, with childhood or late cases,10, 11 to propensity in recovering vision, more frequent with the m.14484 T>C mutation,12 and to clinical expression that in a subset of patients may be more widespread.4The mtDNA mutations are necessary but not sufficient to cause LHON,13 with penetrance being on average about 50% for males and 10% for females. The association of specific mtDNA haplotypes of haplogroup J with the m.14484 T>C and m.11778G>A mutations has been consistently documented in patients of European descent, indicating that mtDNA background modulates to a certain extent disease penetrance.14, 15 However, in a prototypical LHON maternal lineage, despite all the individuals carry the homoplasmic mtDNA mutation regardless the haplogroup, only some develop the disease, pointing to further factors that may be genetic and environmental.16 Thus, male prevalence and incomplete penetrance remain the two investigated and problematic issues in LHON. Both issues have been recently mechanistically related to the efficiency of compensatory mitochondrial biogenesis.17, 18 Estrogens ameliorate mitochondrial dysfunction by activating mitochondrial biogenesis, suggesting that females are naturally protected during their fertile period.17, 19 Furthermore, by studying different experimental systems (blood cells, skeletal muscle, skin-derived fibroblasts and ocular tissue) we found that the unaffected mutation carriers had a significantly higher mtDNA copy number and mitochondrial mass compared with their affected relatives,18 indicating that efficiently increasing mitochondrial biogenesis may overcome the pathogenic effect of the mtDNA mutation. Recently, others obtained similar results in different LHON cohorts.20 Notwithstanding, nuclear modifiers remain elusive. In particular, association of LHON with genetic variants was not consistent across different studies.18, 21 Similarly inconsistent was the association with chromosome X-linked loci, hypothesized to explain male prevalence.22, 23, 24Several other factors have been implicated in LHON, including exposure to cigarette smoke, alcohol and chemical toxins, head trauma, acute physical illness, psychological stress, antiretroviral and antituberculosis drugs.4, 25 These and other environmental factors can have a triggering role in LHON pathogenesis. For example, in vitro exposure to 2,5 exanedione had a toxic effect on LHON cybrid cells, with an increased sensitivity if they harbored a haplogroup J background.26 A major environmental trigger of LHON is cigarette smoke; Sadun et al.27 and Kirkman et al.25 showed that LHON penetrance is significantly increased in smokers, independently of gender and alcohol intake.In the current study, we explored further the effect of cigarette smoking in LHON, showing in white blood cells from patients of large LHON cohorts, and in skin-derived fibroblasts, that cigarette derivatives exert their toxicity by depressing mtDNA copy number and oxidative phosphorylation (OXPHOS). However, unaffected mutation carriers displayed the most efficient capacity for reactive oxygen species (ROS) detoxification, which was not hampered by exposure to cigarette derivatives.  相似文献   

9.
We report here the clinical, genetic, and molecular evaluations of four Han Chinese families with Leber’s hereditary optic neuropathy. Thirty-one (20 males/11 females) of 83 matrilineal relatives in these families exhibited the variable severity and age-at-onset in visual impairment. The average age-of-onset of vision loss was 22 years old. Strikingly, these penetrances of visual impairment in these Chinese families were higher than those in other 11 Chinese pedigrees carrying the only ND4 G11778A mutation. Molecular analysis identified the known G11778A mutation and distinct sets of variants belonging to the Asian haplogroups M10a and M7c2. Of these, the T14502C mutation caused the substitution of a highly conserved isoleucine for valine at position 58 in ND6. This mutation has been associated with LHON in other Chinese families with very low penetrance of LHON. Thus, the deficient activities of complex I, caused by G11778A mutation, would be worsened by the T14502C mutation in these four Chinese families. As a result, mitochondrial dysfunctions would lead to the high penetrance and expressivity of visual loss in these Chinese families carrying both G11778A and T14502C mutations than other 11 Chinese families carrying only G11778A mutation. These data suggested that the T14502C variant may modulate the phenotypic manifestation of the G11778A mutation in these Chinese pedigrees.  相似文献   

10.
Leber hereditary optic neuropathy (LHON) is due primarily to one of three common point mutations of mitochondrial DNA (mtDNA), but the incomplete penetrance implicates additional genetic or environmental factors in the pathophysiology of the disorder. Both the 11778G-->A and 14484T-->C LHON mutations are preferentially found on a specific mtDNA genetic background, but 3460G-->A is not. However, there is no clear evidence that any background influences clinical penetrance in any of these mutations. By studying 3,613 subjects from 159 LHON-affected pedigrees, we show that the risk of visual failure is greater when the 11778G-->A or 14484T-->C mutations are present in specific subgroups of haplogroup J (J2 for 11778G-->A and J1 for 14484T-->C) and when the 3460G-->A mutation is present in haplogroup K. By contrast, the risk of visual failure is significantly less when 11778G-->A occurs in haplogroup H. Substitutions on MTCYB provide an explanation for these findings, which demonstrate that common genetic variants have a marked effect on the expression of an ostensibly monogenic mtDNA disorder.  相似文献   

11.
Essential hypertension (EH, MIM 145500) is the most common cardiovascular disease and affects one-quarter of the world's adult population. Families with EH in a mode of maternal transmission have been occasionally observed in clinical settings and suggested an involvement of mitochondrial DNA (mtDNA) mutation. We aimed to characterize the role of mtDNA mutation in EH. We reported a large Han Chinese family with a maternally inherited EH and an extraordinarily high percentage of sudden death mainly in affected females. Analysis of the entire mtDNA genome of the proband identified a homoplasmic primary mutation m.14484T>C for Leber's hereditary optic neuropathy (LHON), along with several variants indicating haplogroup F1 status. Intriguingly, no maternal member in this family had LHON though they all harbored m.14484T>C. The arterial stiffness of the members carrying mutation m.14484T>C was significantly increased than that of non-maternal members without this mutation. No environmental factor (including age, sex, smoking, diabetes, hyperlipidemia) was correlated with the decreased aortic elastic properties observed in affected members. Mitochondrial respiration rate and membrane potential (ΔΨ(m)) were significantly reduced in lymphoblastoid cell lines established from affected members carrying m.14484T>C when compared to control cell lines (P<0.05). There was an elevation of reactive oxygen species and a compensatory increase of mitochondrial mass in mutant cell lines. Our results suggest that m.14484T>C causes EH under certain circumstance. This study provides a paradigm for diverse phenotypes of the primary LHON mutation and suggests for the necessity of routine cardiac evaluation in patients with the primary LHON mutation.  相似文献   

12.
We report the clinical and genetic characterization of a Chinese LHON family carrying an ND1/C4171A mutation. This family has high penetrance of visual impairment and extremely low frequency of vision recovery, which is in marked contrast to previously reported results for Korean LHON families with the same mutation. Sequence analysis of the complete mtDNA in the partially defined East Asian haplogroup N9a1 revealed the presence of 29 other variants. A novel heteroplasmic A14841G mutation, one of the variants with a serine substituted for a highly conserved asparagine at amino acid 32 of Cytochrome b (Cytb), may play a synergistic role with the C4171A mutation, leading to significantly different clinical manifestations of LHON among these families. The study further confirmed that C4171A was a rare primary LHON mutation, and the mtDNA background could also contribute to the clinical manifestation of the LHON/C4171A mutation.  相似文献   

13.
Leber''s hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinson''s disease.  相似文献   

14.
We have analyzed mitochondrial DNA sequence in 15 Russian LHON patients and found the new mtDNA sequence variant in one family (2 patients) who showed 100% penetrance of the disease in men. This family has a T14484C primary mutation, and four secondary mutations (T4216C, G13708A, G15812A, G15257A), which belong to the European haplogroup J. The new sequence variant of A9016G in the ATPase 6 gene changed highly conserved amino acid of isoleucine to valine, has not been found in the rest of 13 LHON patients and controls. This novel sequence variant may contribute to the 100% penetration of LHON disorder in men of this family.  相似文献   

15.
Leber's hereditary optic neuropathy (LHON) is a maternally transmitted form of blindness caused by mitochondrial DNA (mtDNA) mutations. Approximately 90% of LHON cases are caused by 3460A, 11778A, or 14484C mtDNA mutations. These are designated "primary" mutations because they impart a high risk for LHON expression. Although the 11778A and 14484C mutations unequivocally predispose carriers to LHON, they are preferentially associated with mtDNA haplogroup J, one of nine Western Eurasian mtDNA lineages, suggesting a synergistic and deleterious interaction between these LHON mutations and haplogroup J polymorphism(s). We report here the characterization of a new primary LHON mutation in the mtDNA ND4L gene at nucleotide pair 10663. The homoplasmic 10663C mutation has been found in three independent LHON patients who lack a known primary mutation and all of which belong to haplogroup J. This mutation has not been found in a large number of haplotype-matched or non-haplogroup-J control mtDNAs. Phylogenetic analysis with primarily complete mtDNA sequence data demonstrates that the 10663C mutation has arisen at least three independent times in haplogroup J, indicating that it is not a rare lineage-specific polymorphism. Analysis of complex I function in patient lymphoblasts and transmitochondrial cybrids has revealed a partial complex I defect similar in magnitude to the 14484C mutation. Thus, the 10663C mutation appears to be a new primary LHON mutation that is pathogenic when co-occurring with haplogroup J. These results strongly support a role for haplogroup J in the expression of certain LHON mutations.  相似文献   

16.
The complete mitochondrial DNA (mtDNA) sequences for 63 Dutch pedigrees with Leber hereditary optic neuropathy (LHON) were determined, 56 of which carried one of the classic LHON mutations at nucleotide (nt) 3460, 11778, or 14484. Analysis of these sequences indicated that there were several instances in which the mtDNAs were either identical or related by descent. The most striking example was a haplogroup J mtDNA that carried the 14484 LHON mutation. Four different but related mitochondrial genotypes were identified in seven of the Dutch pedigrees with LHON, including six of those described by van Senus. The control region of the founder sequence for these Dutch pedigrees with LHON matches the control-region sequence that Macmillan and colleagues identified in the founder mtDNA of French Canadian pedigrees with LHON. In addition, we obtained a perfect match between the Dutch 14484 founder sequence and the complete mtDNA sequences of two Canadian pedigrees with LHON. Those results indicate that these Dutch and French Canadian 14484 pedigrees with LHON share a common ancestor, that the single origin of the 14484 mutation in this megalineage occurred before the year 1600, and that there is a 14484/haplogroup J founder effect. We estimate that this lineage--including the 14484 LHON mutation--arose 900-1,800 years ago. Overall, the phylogenetic analyses of these mtDNA sequences conservatively indicate that a LHON mutation has arisen at least 42 times in the Dutch population. Finally, analysis of the mtDNA sequences from those pedigrees that did not carry classic LHON mutations suggested candidate pathogenic mutations at nts 9804, 13051, and 14325.  相似文献   

17.
We report here the clinical, genetic, and molecular characterization of three Chinese families (WZ4, WZ5, and WZ6) with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Penetrances of visual impairment in these Chinese families were 33.3%, 35.7%, and 35.5%, respectively, with an average 34.8%. Furthermore, the average age-at-onset in those Chinese families was 17, 20, and 18 years. In addition, the ratios between affected male and female matrilineal relatives in these Chinese families were 3:0, 1:1, and 1.2:1, respectively. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G11778A mutation associated with LHON in many families. The fact that mtDNA of those pedigrees belonged to different haplogroups F1, D4, and M10 suggested that the G11778A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. The I187T mutation in the ND1, the S99A mutation in the A6, the V254I in CO3, and I58V in ND6 mutation, showing high evolutional conservation, may contribute to the phenotypic expression of the G11778A mutation in the WZ6 pedigree. By contrast, none of mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence in WZ4 and WZ5 pedigrees. Apparently, these variants do not have a potential modifying role in the development of visual impairment associated with G11778A mutation in those two families. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and expressivity of LHON in these three Chinese families carrying the G11778A mutation.  相似文献   

18.
Leber's hereditary optic neuropathy (LHON) is a form of blindness caused by mitochondrial DNA (mtDNA) mutations in complex I genes. We report an extensive biochemical analysis of the mitochondrial defects in lymphoblasts and transmitochondrial cybrids harboring the three most common LHON mutations: 3460A, 11778A, and 14484C. Respiration studies revealed that the 3460A mutation reduced the maximal respiration rate 20-28%, the 11778A mutation 30-36%, and the 14484C mutation 10-15%. The respiration defects of the 3460A and 11778A mutations transferred in cybrid experiments linking these defects to the mtDNA. Complex I enzymatic assays revealed that the 3460A mutation resulted in a 79% reduction in specific activity and the 11778A mutation resulted in a 20% reduction, while the 14484C mutation did not affect the complex I activity. The enzyme defect of the 3460A mutation transferred with the mtDNA in cybrids. Overall, these data support the conclusion that the 3460A and 11778A mutants result in complex I defects and that the 14484C mutation causes a much milder biochemical defect. These studies represent the first direct comparison of oxidative phosphorylation defects among all of the primary LHON mtDNA mutations, thus permitting insight into the underlying pathophysiological mechanism of the disease.  相似文献   

19.
Essential hypertension (EH, MIM 145500) is the most common cardiovascular disease and affects one-quarter of the world's adult population. Families with EH in a mode of maternal transmission have been occasionally observed in clinical settings and suggested an involvement of mitochondrial DNA (mtDNA) mutation. We aimed to characterize the role of mtDNA mutation in EH. We reported a large Han Chinese family with a maternally inherited EH and an extraordinarily high percentage of sudden death mainly in affected females. Analysis of the entire mtDNA genome of the proband identified a homoplasmic primary mutation m.14484T>C for Leber's hereditary optic neuropathy (LHON), along with several variants indicating haplogroup F1 status. Intriguingly, no maternal member in this family had LHON though they all harbored m.14484T>C. The arterial stiffness of the members carrying mutation m.14484T>C was significantly increased than that of non-maternal members without this mutation. No environmental factor (including age, sex, smoking, diabetes, hyperlipidemia) was correlated with the decreased aortic elastic properties observed in affected members. Mitochondrial respiration rate and membrane potential (ΔΨm) were significantly reduced in lymphoblastoid cell lines established from affected members carrying m.14484T>C when compared to control cell lines (P < 0.05). There was an elevation of reactive oxygen species and a compensatory increase of mitochondrial mass in mutant cell lines. Our results suggest that m.14484T>C causes EH under certain circumstance. This study provides a paradigm for diverse phenotypes of the primary LHON mutation and suggests for the necessity of routine cardiac evaluation in patients with the primary LHON mutation.  相似文献   

20.

Background

Somatic mutation in mitochondrial DNA (mtDNA) has been proposed to contribute to initiation and progression of human cancer. In our previous study, high frequency of somatic mutations was found in the D-loop region of mtDNA of gastric cancers. However, it is unclear whether somatic mutations occur in the coding region of mtDNA of gastric cancers.

Methods

Using DNA sequencing, we studied 31 gastric cancer specimens and corresponding non-cancerous stomach tissues. Moreover, a human gastric cancer SC-M1 cell line was treated with oligomycin to induce mitochondrial dysfunction. Cisplatin sensitivity and cell migration were analyzed.

Results

We identified eight somatic mutations in the coding region of mtDNAs of seven gastric cancer samples (7/31, 22.6%). Patients with somatic mutations in the entire mtDNA of gastric cancers did not show significant association with their clinicopathologic features. Among the eight somatic mutations, five point mutations (G3697A, G4996A, G9986A, C12405T and T13015C) are homoplasmic and three mutations (5895delC, 7472insC and 12418insA) are heteroplasmic. Four (4/8, 50%) of these somatic mutations result in amino acid substitutions in the highly conserved regions of mtDNA, which potentially lead to mitochondrial dysfunction. In addition, in vitro experiments in SC-M1 cells revealed that oligomycin-induced mitochondrial dysfunction promoted resistance to cisplatin and enhanced cell migration. N-acetyl cysteine was effective in the prevention of the oligomycin-enhanced migration, which suggests that reactive oxygen species generated by defective mitochondria may be involved in the enhanced migration of SC-M1 cells.

General Significance

Our results suggest that somatic mtDNA mutations and mitochondrial dysfunction may play an important role in the malignant progression of gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号