首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Vacancy of occupied N-glycosylation sites of glycoproteins is quite disruptive to a multicellular organism, as underlined by congenital disorders of glycosylation. Since a neuronal component is typically associated with this disease, we evaluated the impact of N-glycosylation processing of a neuronal voltage gated potassium channel, Kv3.1b, expressed in a neuronal-derived cell line, B35 neuroblastoma cells.

Methods

Total internal reflection fluorescence and differential interference contrast microscopy measurements of live B35 cells expressing wild type and glycosylation mutant Kv3.1b proteins were used to evaluate the distribution of the various forms of the Kv3.1b protein in the cell body and outgrowths. Cell adhesion assays were also employed.

Results

Microscopy images revealed that occupancy of both N-glycosylation sites of Kv3.1b had relatively similar amounts of Kv3.1b in the outgrowth and cell body while vacancy of one or both sites led to increased accumulation of Kv3.1b in the cell body. Further both the fully glycosylated and partially glycosylated N229Q Kv3.1b proteins formed higher density particles in outgrowths compared to cell body. Cellular assays demonstrated that the distinct spatial arrangements altered cell adhesion properties.

Conclusions

Our findings provide direct evidence that occupancy of the N-glycosylation sites of Kv3.1b contributes significantly to its lateral heterogeneity in membranes of neuronal-derived cells, and in turn alters cellular properties.

General significance

Our study demonstrates that N-glycans of Kv3.1b contain information regarding the association, clustering, and distribution of Kv3.1b in the cell membrane, and furthermore that decreased occupancy caused by congenital disorders of glycosylation may alter the biological activity of Kv3.1b.  相似文献   

3.

Background

Despite detailed knowledge about the structure and signaling properties of individual collagen receptors, much remains to be learned about how these receptors participate in linking cells to fibrillar collagen matrices in tissues. In addition to collagen-binding integrins, a group of proteins with affinity both for fibrillar collagens and integrins link these two protein families together. We have introduced the name COLINBRI (COLlagen INtegrin BRIdging) for this set of molecules. Whereas collagens are the major building blocks in tissues and defects in these structural proteins have severe consequences for tissue integrity, the mild phenotypes of the integrin type of collagen receptors have raised questions about their importance in tissue biology and pathology.

Scope of review

We will discuss the two types of cell linkages to fibrillar collagen (direct- versus indirect COLINBRI-mediated) and discuss how the parallel existence of direct and indirect linkages to collagens may ensure tissue integrity.

Major conclusions

The observed mild phenotypes of mice deficient in collagen-binding integrins and the relatively restricted availability of integrin-binding sequences in mature fibrillar collagen matrices support the existence of indirect collagen-binding mechanisms in parallel with direct collagen binding in vivo.

General significance

A continued focus on understanding the molecular details of cell adhesion mechanisms to collagens will be important and will benefit our understanding of diseases like tissue- and tumor fibrosis where collagen dynamics are disturbed. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

4.

Background

Glycosylation is a multi-step post-translational enzymatic process which enhances the functional diversity of secreted or membrane proteins and is implicated in physiological and pathological conditions. Chondroitin sulfate (CS) chains are glycosaminoglycan chains, consisting of disaccharide units of glucuronic acid and N-acetylgalactosamine, attached to proteins as part of proteoglycans.

Scope of Review

The existing knowledge on glycosylation by CS (CS glycanation) of cell membrane proteins and receptors, such as syndecans, chondroitin sulfate proteoglycan 4, betaglycan, neuropilin-1, integrins and receptor protein tyrosine phosphatase β/ζ, is summarized and the importance of CS glycanation in growth factor-induced migration, angiogenesis and tumor growth and invasion is described.

Major Conclusions

Identification of glycosylation so far used to be a means of further characterizing and categorizing proteins and receptors. Although there is a significant amount of information regarding the interaction of growth factors with CS chains, very little information exists on the core proteins involved. It is now evident that there is more than meets the eye regarding the addition of glycans.

General Significance

Future effort should focus on characterizing CS glycanation of membrane proteins and receptors of interest in an attempt to elucidate its contribution in fine-tuning growth factor-induced signaling. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

5.

Background

Extracellular matrix (ECM) components and intracellular pH (pHi) may serve as regulators of cell migration in various cell types.

Methods

The Oris migration assay was used to assess the effect of fibronectin (FN) on cell motility. The Na+/H+ exchanger (NHE)-1 activity was evaluated by measuring pHi and [22Na+] uptake. To examine activated signaling molecules, western blot analysis and immunoprecipitation was performed.

Results

ECM components (FN, laminin, fibrinogen, and collagen type I) increased [22Na+] uptake, pHi, and cell migration. In addition, FN-induced increase of cell migration was inhibited by NHE-1 inhibitor amiloride or NHE-1-specific siRNA. FN selectively increased the mRNA and protein expression of NHE-1, but not that of NHE-2 or NHE-3. FN binds integrin β1 and subsequently stimulates caveolin-1 phosphorylation and Ca2 + influx. Then, NHE-1 is phosphorylated by RhoA and Rho kinases, and Ca2 +/calmodulin (CaM) signaling elicits complex formation with NHE-1, which is enriched in lipid raft/caveolae microdomains of the plasma membrane. Activation of NHE-1 continuously induces an increase of [22Na+] uptake and pHi. Finally, NHE-1-dependent extracellular signal-regulated kinase (ERK) 1/2 phosphorylation enhanced matrix metalloproteinase-2 (MMP-2) and filamentous-actin (F-actin) expression, partially contributing to the regulation of embryonic stem cells (ESCs) migration.

Conclusions

FN stimulated mESCs migration and proliferation through NHE-1 activation, which were mediated by lipid raft-associated caveolin-1, RhoA/ROCK, and Ca2 +/CaM signaling pathways.

General significance

The precise role of NHE in the modulation of ECM-related physiological functions such as proliferation and migration remains poorly understood. Thus, this study analyzed the relationship between FN and NHE in regulating the migration of mouse ESCs and their related signaling pathways.  相似文献   

6.

Background

N-linked oligosaccharides operate as tags for protein quality control, consigning glycoproteins to different fates, i.e. folding in the endoplasmic reticulum (ER), vesicular transport between the ER and the Golgi complex, and ER-associated degradation of glycoproteins, by interacting with a panel of intracellular lectins in the early secretory pathway.

Scope of review

This review summarizes the current state of knowledge regarding the molecular and structural basis for glycoprotein-fate determination in cells that is achieved through the actions of the intracellular lectins and its partner proteins.

Major conclusions

Cumulative frontal affinity chromatography (FAC) data demonstrated that the intracellular lectins exhibit distinct sugar-binding specificity profiles. The glycotopes recognized by these lectins as fate determinants are embedded in the triantennary structures of the high-mannose-type oligosaccharides and are exposed upon trimming of the outer glucose and mannose residues during the N-glycan processing pathway. Furthermore, recently emerged 3D structural data offer mechanistic insights into functional interplay between an intracellular lectin and its binding partner in the early secretory pathway.

General significance

Structural biology approaches in conjunction with FAC methods provide atomic pictures of the mechanisms behind the glycoprotein-fate determination in cells. This article is a part of a Special issue entitled: Glycoproteomics.  相似文献   

7.

Background

The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases.

Methods

The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated.

Results

Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase.

Conclusions

The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases.

General significance

The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.  相似文献   

8.
Wang H  Zhang W  Zhao J  Zhang L  Liu M  Yan G  Yao J  Yu H  Yang P 《Journal of Proteomics》2012,75(4):1375-1385
The membrane glycoprotein CD82 (KAI1) has attracted increasing attention as a suppressor of cell migration, related tumor invasion, as well as metastasis. The glycosylation of CD82 has been shown to be involved in a correlative cell adhesion and motility. However, the N-glycosylation pattern of CD82 has not been described yet. In the current study, a detailed characterization of the recombinant human CD82 N-linked glycosylation pattern was conducted by employing an integrative proteomic and glycomic approach, including glycosidase and protease digestions, glycan permethylation, MS analyses, site-directed mutagenesis, and lectin blots. The results reveal three N-glycosylation sites, and further demonstrate a putative glycosylation site at Asn157 for the first time. A highly heterogeneous pattern of N-linked glycans is described, which express distinct carbohydrate epitopes, such as bisecting N-acetylglucosamine, (α-2,6) N-acetylneuraminic acid, and core fucose. These epitopes are highly associated with various biological functions, including cell adhesion and cancer metastasis, and can possibly influence the anti-cancer inhibition ability of CD82.  相似文献   

9.

Background

CD10, also known as neprilysin or enkephalinase exhibiting neutral endopeptidase (NEP) activity, is expressed by B-lineage hematopoietic cells as well as a variety of cells from normal tissues. It cleaves peptides such as cytokines to act for terminating inflammatory responses. Although CD10 molecules of the human pre-B-cell line NALM-6 have 6 consensus N-glycosylation sites, three of them are known to be N-glycosylated by X-ray crystallography.

Methods

In order to investigate the role of N-glycans in the full expression of NEP activity, we modified N-glycans by treatment of NALM6 cells with various glycosidases or alter each of the consensus N-glycosylation sites by generating site-directed mutagenesis and compared the NEP activities of the sugar-altered CD10 with those of intact CD10.

Results

CD10 of the human B-cell line NALM-6 was dominantly localized in raft microdomains and heterogeneously N-glycosylated. Although neither desialylation nor further degalactosylation caused defective NEP activity, removal of only a small part of N-glycans by treatment with glycopeptidase F under non-denaturing conditions decreased NEP activity completely. All of the three consensus sites of CD10 in HEK293 cells introduced with wild type-CD10 were confirmed to be N-glycosylated. Surface expression of N-glycan at Asn628-deleted CD10 by HEK293 cells was greatly decreased as well as it lost entire NEP activities.

Conclusions

N-glycosylation at Asn628 is essential not only for NEP activities, but also for surface expression.

General significance

Quality control system does not allow dysfunctional ecto-type proteases to express on plasma membrane.  相似文献   

10.

Background

Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity.

Methods

MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting.

Results

BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21.

Conclusion

BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells.

General significance

Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer.  相似文献   

11.
Lymphocytes accumulate within the extracellular matrix (ECM) of tumor, wound, or inflammatory tissues. These tissues are largely comprised of polymerized adhesion proteins such as fibrin and fibronectin or their fragments. Nonactivated lymphoid cells attach preferentially to polymerized ECM proteins yet are unable to attach to monomeric forms or fragments of these proteins without previous activation. This adhesion event depends on the appropriate spacing of integrin adhesion sites. Adhesion of nonactivated lymphoid cells to polymeric ECM components results in activation of the antigen receptor-associated Syk kinase that accumulates in adhesion-promoting podosomes. In fact, activation of Syk by antigen or agonists, as well as expression of an activated Syk mutant in lymphoid cells, facilitates their adhesion to monomeric ECM proteins or their fragments. These results reveal a cooperative interaction between signals emanating from integrins and antigen receptors that can serve to regulate stable lymphoid cell adhesion and retention within a remodeling ECM.  相似文献   

12.
It is well documented that glycan synthesis is altered in some pathological processes, including cancer. The most frequently observed alterations during tumourigenesis are extensive expression of β1,6-branched complex type N-glycans, the presence of poly-N-acetyllactosamine structures, and high sialylation of cell surface glycoproteins. This study investigated two integrins, α3β1 and αvβ3, whose expression is closely related to cancer progression. Their oligosaccharide structures in two metastatic melanoma cell lines (WM9, WM239) were analysed with the use of matrix-assisted laser desorption ionisation mass spectrometry. Both examined integrins possessed heavily sialylated and fucosylated glycans, with β1,6-branches and short polylactosamine chains. In WM9 cells, α3β1 integrin was more variously glycosylated than αvβ3; in WM239 cells the situation was the reverse. Functional studies (wound healing and ELISA integrin binding assays) revealed that the N-oligosaccharide component of the tested integrins influenced melanoma cell migration on vitronectin and α3β1 integrin binding to laminin-5. Additionally, more variously glycosylated integrins exerted a stronger influence on these parameters. To the best of our knowledge, this is the first report concerning structural characterisation of αvβ3 integrin glycans in melanoma or in any cancer cells.  相似文献   

13.

Background

Intra-abdominal ascites is a complication of ovarian cancers and constitutes a permissive microenvironment for metastasis. Since fibronectin and vitronectin are key actors in ovarian cancer progression, we investigated their occurrence and molecular characteristics in various ascites fluids and the influence of these ascites-derived proteins on cell behavior.

Methods

Fibronectin and vitronectin were investigated by immunoblotting within various ascites fluids. A combined affinity-based protocol was developed to purify both proteins from the same sample. Each purified protein was characterized with regard to its molecular features (molecular mass of isoforms, tryptophan intramolecular environment, hydrodynamic radii), and its influence on cell adhesion.

Results

Fibronectin and vitronectin were found in all tested ascites. Several milligrams of purified proteins were obtained from ascites of varying initial volumes. Molecular mass isoforms and conformational lability of proteins differed according to the ascites of origin. When incorporated into the cancer cell environment, ascites-derived fibronectin and vitronectin supported cell adhesion and migration with various degrees of efficiency, and induced the recruitment of integrins into focal contacts.

Conclusions

To our knowledge, this is the first combined purification of two extracellular matrix proteins from a single pathological sample containing a great variety of bioactive molecules. This study highlights that ascites-derived fibronectin and vitronectin exhibit different properties depending on the ascites.

General significance

Investigating the relationships between the molecular properties of ascites components and ovarian cancer cell phenotype according to the ascites may be critical for a better understanding of the recurrence of this lethal disease and for further biomarker identification.  相似文献   

14.

Background

Over the years, the N-glycosylation of both human and bovine lactoferrin (LF) has been studied extensively, however not all aspects have been studied in as much detail. Typically, the bovine LF complex-type N-glycans include certain epitopes, not found in human LF N-glycans, i.e. Gal(α1-3)Gal(β1-4)GlcNAc (αGal), GalNAc(β1-4)GlcNAc (LacdiNAc), and N-glycolylneuraminic acid (Neu5Gc). The combined presence of complex-type N-glycans, with αGal, LacdiNAc, LacNAc [Gal(β1-4)GlcNAc], Neu5Ac (N-acetylneuraminic acid), and Neu5Gc epitopes, and oligomannose-type N-glycans complicates the high-throughput analysis of such N-glycoprofiles highly.

Methods

For the structural analysis of enzymatically released N-glycan pools, containing both LacNAc and LacdiNAc epitopes, a prefractionation protocol based on Wisteria floribunda agglutinin affinity chromatography was developed. The sub pools were analysed by MALDI-TOF-MS and HPLC-FD profiling, including sequential exoglycosidase treatments.

Results

This protocol separates the N-glycan pool into three sub pools, with (1) free of LacdiNAc epitopes, (2) containing LacdiNAc epitopes, partially shielded by sialic acid, and (3) containing LacdiNAc epitopes, without shielding by sialic acid. Structural analysis by MALDI-TOF-MS and HPLC-FD showed a complex pattern of oligomannose-, hybrid-, and complex-type di-antennary structures, both with, and without LacdiNAc, αGal and sialic acid.

Conclusions

Applying the approach to bovine LF has led to a more detailed N-glycome pattern, including LacdiNAc, αGal, and Neu5Gc epitopes, than was shown in previous studies.

General significance

Bovine milk proteins contain glycosylation patterns that are absent in human milk proteins; particularly, the LacdiNAc epitope is abundant. Analysis of bovine milk serum proteins is therefore excessively complicated. The presented sub fractionation protocol allows a thorough analysis of the full scope of bovine milk protein glycosylation. This article is part of a Special Issue entitled Glycoproteomics.  相似文献   

15.

Background

(5R?) and (5S?) diastereomers of 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd) are major oxidation products of 2′-deoxycytidine and thymidine respectively. If not repaired, when present in cellular DNA, these base lesions may be processed by DNA polymerases that induce mutagenic and cell lethality processes.

Methods

Synthetic oligonucleotides that contained a unique 5-hydroxyhydantoin (5-OH-Hyd) or 5-hydroxy-5-methylhydantoin (5-OH-5-Me-Hyd) nucleobase were used as probes for repair studies involving several E. coli, yeast and human purified DNA N-glycosylases. Enzymatic reaction mixtures were analyzed by denaturing polyacrylamide gel electrophoresis after radiolabeling of DNA oligomers or by MALDI-TOF mass spectrometry measurements.

Results

In vitro DNA excision experiments carried out with endo III, endo VIII, Fpg, Ntg1 and Ntg2, show that both base lesions are substrates for these DNA N-glycosylases. The yeast and human Ogg1 proteins (yOgg1 and hOgg1 respectively) and E. coli AlkA were unable to cleave the N-glycosidic bond of the 5-OH-Hyd and 5-OH-5-Me-Hyd lesions. Comparison of the kcat/Km ratio reveals that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than 5-OH-Hyd and 5-OH-5-Me-Hyd. The kinetic results obtained with endo III indicate that 5-OH-Hyd and 5-OH-5-Me-Hyd are much better substrates than 5-hydroxycytosine, a well known oxidized pyrimidine substrate for this DNA N-glycosylase.

Conclusions

The present study supports a biological relevance of the base excision repair processes toward the hydantoin lesions, while the removal by the Fpg and endo III proteins are effected at better or comparable rates to that of the removal of 8-oxoGua and 5-OH-Cyt, two established cellular substrates.

General significance

The study provides new insights into the substrate specificity of DNA N-glycosylases involved in the base excision repair of oxidized bases, together with complementary information on the biological role of hydantoin type lesions.  相似文献   

16.

Background

-Acetylhistidine (NAH) is present in very high concentrations exclusively in the brain and lens of ectothermic vertebrates, including ray-finned fishes, amphibians and reptiles, and not in those of endothermic birds and mammals. Although NAH is known to be synthesized from l-His and acetyl-CoA by histidine N-acetyltransferase (HISAT; EC 2.3.1.33), the gene encoding HISAT has remained unknown for any organism.

Methods

HISAT was purified from the blue mackerel brain, and its partial amino acid sequences were analyzed using mass spectrometry and Edman degradation. Using the sequence information, the corresponding gene was cloned and sequenced. Recombinant proteins encoded by the fish gene and its human homologue were expressed in a cell-free translation system.

Results

HISAT was identified to be a protein encoded by a fish homologue of the human predicted gene NAT16 (N-acetyltransferase 16). HISAT is an unstable enzyme that is rapidly and irreversibly inactivated during preincubation at 37 °C in the absence of acetyl-CoA. In fish brain, the HISAT gene is expressed as two splice variants containing an identical ORF but differing lengths of 5′-UTR. Both variants are expressed exclusively in the fish brain and lens. Interestingly, the recombinant human NAT16 protein, unlike the recombinant fish HISAT, has only trace enzyme activity for NAH synthesis.

Conclusions

These results propose that the function of mammalian NAT16 has been altered from l-His acetylation (NAH synthesis) to another different biological role.

General significance

The molecular identification of HISAT will allow progress in the understanding of the physiological function of NAH in ectothermic vertebrates.  相似文献   

17.

Background

Chronic inflammation in lung diseases contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated proline–glycine–proline (N-ac-PGP). In the current study, we investigate whether N-ac-PGP influences β2-integrin activation and function in neutrophilic firm adhesion to endothelium.

Methods

Human polymorphonuclear leukocytes (PMNs) were isolated from fresh human blood. Subsequently, a transmigration assay was performed to evaluate the active migration of PMNs towards N-ac-PGP. Furthermore, the effect of the tripeptide on β2-integrin activation was assessed by performing the adhesion assay using fibrinogen as a ligand. To determine whether this effect was due to conformational change of β2-integrins, antibodies against CD11b and CD18 were used in the adhesion assay and the expression pattern of CD11b was determined.

Results

Human neutrophils transmigrated through an endothelial cell layer in response to basolateral N-ac-PGP. N-ac-PGP induced also a neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that CD11b/CD18 (Mac-1) was responsible for the N-ac-PGP-induced firm adhesion of neutrophils to fibrinogen. Pertussis toxin decreased the Mac-1 activation indicating the involvement of G-proteins. N-ac-PGP most likely activated Mac-1 by initiating a conformational change, since the expression pattern of Mac-1 on the cell surface did not change significantly.

Conclusions

Chemo-attractant N-acetyl proline–glycine–proline induces CD11b/CD18-dependent neutrophil adhesion.

General significance

This is the first study to describe that the chemo-attractant N-ac-PGP also activates Mac-1 on the surface of neutrophils, which can additionally contribute to neutrophilic transmigration into the lung tissue during lung inflammation.  相似文献   

18.

Background

There is no doubt that future discoveries in the field of biochemistry will depend on the implementation of novel biosensing techniques, able to record biophysiological events with minimal biological interference. In this respect, organic electronics may represent an important new tool for the analysis of structures ranging from single molecules up to cellular events. Specifically, organic field-effect transistors (OFET) are potentially powerful devices for the real-time detection/transduction of bio-signals. Despite this interest, up to date, the experimental data useful to support the development of OFET-based biosensors are still few and, in particular, n-type (electron-transporting) devices, being fundamental to develop highly-performing circuits, have been scarcely investigated.

Methods

Here, films of N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2) molecules, a recently-introduced and very promising n-type semiconductor, have been evaporated on glass and silicon dioxide substrates to test the biocompatibility of this compound and its capability to stay electrically-active even in liquid environments.

Results

We found that PDIF-CN2 transistors can work steadily in water for several hours. Biocompatibility tests, based on in-vitro cell cultivation, remark the need to functionalize the PDIF-CN2 hydrophobic surface by extra-coating layers (i.e. poly-l-lysine) to favor the growth of confluent cellular populations.

Conclusions

Our experimental data demonstrate that PDIF-CN2 compound is an interesting organic semiconductor to develop electronic devices to be used in the biological field.

General significance

This work contributes to define a possible strategy for the fabrication of low-cost and flexible biosensors, based on complex organic complementary metal-oxide-semiconductor (CMOS) circuitry including both p- (hole-transporting) and n-type transistors. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

19.
20.
Macrophage migration is a key aspect in the initiation and progression of atherosclerosis. Insulin-like growth factor (IGF)-1 is highly expressed in macrophages in human atheroma. Its function in macrophage motility, however, remains to be elucidated. The aim of this study was to investigate the impact of IGF-1 on macrophage migration, its signaling pathways and the involvement of integrins and/or matrix metalloproteinases (MMPs).

Results

Migration checker-box experiments demonstrated that IGF-1 induced chemotaxis in human THP-1/macrophages. IGF-1 induced migration was inhibited by RGD-containing peptides and the αvβ3-blocking antibody LM609, but was unaffected by the MMP-inhibitor GM6001. Immunoblotting demonstrated that IGF-1 did not affect the activation of MMPs or TIMPs, nor did it increase αv-integrin protein levels. However, IGF-1 induced recruitment of αvβ3, as well as trans-location of the integrin adaptor protein phospho-paxillin to focal adhesion sites. Pharmacological blocking experiments with specific inhibitors of Akt, PKC and p38 MAP-kinase revealed that IGF-1-dependent activation of focal adhesion kinase (FAK) and paxillin, and consecutively IGF-1 facilitated migration, required IGF-1/IGF-1R-mediated PI3-kinase/PKC/p38-dependent integrin inside-out signaling.

Conclusion

IGF-1 plays a vital role in macrophage migration critically implicated in tissue inflammation. This involves activation of integrins and focal adhesion formation via inside-out PI3-kinase/PKC/p38-dependent signaling, but does not require MMP activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号