首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Peroxiredoxins are important heterogeneous thiol-dependent hydroperoxidases with a variety of isoforms and enzymatic mechanisms. A special subclass of glutaredoxin/glutathione-dependent peroxiredoxins has been discovered in bacteria and eukaryotes during the last decade, but the exact enzymatic mechanisms of these enzymes remain to be unraveled.

Methods

We performed a comprehensive analysis of the enzyme kinetics and redox states of one of these glutaredoxin/glutathione-dependent peroxiredoxins, the antioxidant protein from the malaria parasite Plasmodium falciparum, using steady-state kinetic measurements, site-directed mutagenesis, redox mobility shift assays, gel filtration, and mass spectrometry.

Results

P. falciparum antioxidant protein requires not only glutaredoxin but also glutathione as a true substrate for the reduction of hydroperoxides. One peroxiredoxin cysteine residue and one glutaredoxin cysteine residue are sufficient for catalysis, however, additional cysteine residues of both proteins result in alternative redox states and conformations in vitro with implications for redox regulation. Our data furthermore point to a glutathione-dependent peroxiredoxin activation and a negative subunit cooperativity.

Conclusions

The investigated glutaredoxin/glutathione/peroxiredoxin system provides numerous new insights into the mechanism and redox regulation of peroxiredoxins.

General significance

As a member of the special subclass of glutaredoxin/glutathione-dependent peroxiredoxins, the P. falciparum antioxidant protein could become a reference protein for peroxiredoxin catalysis and regulation.  相似文献   

2.
3.

Background

Chronic lower airway inflammation is considered to be a major cause of pathogenesis and disease progression in chronic obstructive pulmonary disease (COPD). Moraxella catarrhalis is a COPD-associated pathogen causing exacerbations and bacterial colonization in the lower airways of patients, which may contribute to chronic inflammation. Increasing evidence suggests that the epidermal growth factor receptor (EGFR) modulates inflammatory processes in the human airways. The goal of this study was to investigate the role of EGFR in the M. catarrhalis-induced pro-inflammatory immune response in airway epithelial cells.

Methods

The effects of inhibition and gene silencing of EGFR on M. catarrhalis-dependent pro-inflammatory cytokine expression in human primary bronchial epithelial cells (NHBEs), as well as the pulmonary epithelial cell lines BEAS-2B and A549 were analyzed. We also assessed the involvement of EGFR-dependent ERK and NF-κB signaling pathways.

Results

The M. catarrhalis-induced pro-inflammatory immune response depends, at least in part, on the phosphorylation and activation of the EGF receptor. Interaction of M. catarrhalis with EGFR increases the secretion of pro-inflammatory cytokines, which is mediated via ERK and NF-κB activation.

Conclusion

The interaction between M. catarrhalis and EGFR increases airway inflammation caused by this pathogen. Our data suggest that the inhibition of EGFR signaling in COPD could be an interesting target for reducing M. catarrhalis-induced airway inflammation.  相似文献   

4.

Background

Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection.

Results

We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll pathway mutants compared to wildtype hosts highlights the key role of the Toll pathway in D. melanogaster sexual dimorphism in resistance to infection.

Conclusion

Altogether, our data demonstrate that Toll pathway activity differs between male and female D. melanogaster in response to bacterial infection, thus identifying innate immune signaling as a determinant of sexual immune dimorphism.
  相似文献   

5.

Background

The S. cerevisiae α-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic.

Methods

Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization.

Results

Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of α-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates α-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis.

Conclusions

α-factor induces oligomerization of Ste2p in vitro and in membrane.

General significance

These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.  相似文献   

6.
7.

Background

Due to increasing antibiotics resistance, antimicrobial peptides (AMPs) are receiving increased attention. Pseudomonas aeruginosa is a major pathogen in this context, involved, e.g., in keratitis and wound infections. Novel bactericidal agents against this pathogen are therefore needed.

Methods

Bactericidal potency was monitored by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was probed by hemolysis. Mechanistic information was obtained from assays on peptide-induced vesicle disruption and lipopolysaccharide binding.

Results

End-tagging by hydrophobic amino acids yields increased potency of AMPs against P. aeruginosa, irrespective of bacterial proteinase production. Exemplifying this by two peptides from kininogen, GKHKNKGKKNGKHNGWK and KNKGKKNGKH, potency increased with tag length, correlating to more efficient bacterial wall and vesicle rupture, and to more pronounced P. aeruginosa lipopolysaccharide binding. End-tag effects remained at high electrolyte concentration and in the presence of plasma or anionic macromolecular scavengers. The tagged peptides displayed stability against P. aeruginosa elastase, and were potent ex vivo, both in a contact lens model and in a skin wound model.

General significance

End-tagging, without need for post-peptide synthesis modification, may be employed to enhance AMP potency against P. aeruginosa at maintained limited toxicity.  相似文献   

8.

Background

Modulated immune signal (CD14–TLR and TNF) in leishmaniasis can be linked to EGFR pathway involved in wound healing, through crosstalk points. This signaling network can be further linked to a synthetic gene circuit acting as a positive feedback loop to elicit a synchronized intercellular communication among the immune cells which may contribute to a better understanding of signaling dynamics in leishmaniasis.

Methods

Network reconstruction with positive feedback loop, simulation (ODE 15s solver) and sensitivity analysis of CD14–TLR, TNF and EGFR was done in SimBiology (MATLAB 7.11.1). Cytoscape and adjacency matrix were used to calculate network topology. PCA was extracted by using sensitivity coefficient in MATLAB. Model reduction was done using time, flux and sensitivity score.

Results

Network has five crosstalk points: NIK, IκB–NFκB and MKK (4/7, 3/6, 1/2) which show high flux and sensitivity. PI3K in EGFR pathway shows high flux and sensitivity. PCA score was high for cytoplasmic ERK1/2, PI3K, Atk, STAT1/3 and nuclear JNK. Of the 125 parameters, 20% are crucial as deduced by model reduction.

Conclusions

EGFR can be linked to CD14–TLR and TNF through the MAPK crosstalk points. These pathways may be controlled through Ras and Raf that lie upstream of signaling components ERK ½ (c) and JNK (n) that have a high PCA score via a synthetic gene circuit for activating cell–cell communication to elicit an inflammatory response. Also a disease resolving effect may be achieved through PI3K in the EGFR pathway.

General significance

The reconstructed signaling network can be linked to a gene circuit with a positive feedback loop, for cell–cell communication resulting in synchronized response in the immune cell population, for disease resolving effect in leishmaniasis.  相似文献   

9.
10.

Background

Surfactant protein D (SP-D) is a member of the family of proteins termed collagen-like lectins or “collectins” that play a role in non-antibody-mediated innate immune responses [1]. The primary function of SP-D is the modulation of host defense and inflammation [2].

Scope of review

This review will discuss recent findings on the physiological importance of SP-D S-nitrosylation in biological systems and potential mechanisms that govern SP-D mediated signaling.

Major conclusions

SP-D appears to have both pro- and anti-inflammatory signaling functions.SP-D multimerization is a critical feature of its function and plays an important role in efficient innate host defense. Under baseline conditions, SP-D forms a multimer in which the N-termini are hidden in the center and the C-termini are on the surface. This multimeric form of SP-D is limited in its ability to activate inflammation. However, NO can modify key cysteine residues in the hydrophobic tail domain of SP-D resulting in a dissociation of SP-D multimers into trimers, exposing the S-nitrosylated N-termini. The exposed S-nitrosylated tail domain binds to the calreticulin/CD91 receptor complex and initiates a pro-inflammatory response through phosphorylation of p38 and NF-κB activation [3,4]. In addition, the disassembled SP-D loses its ability to block TLR4, which also results in activation of NF-κB.

General significance

Recent studies have highlighted the capability of NO to modify SP-D through S-nitrosylation, causing the activation of a pro-inflammatory role for SP-D [3]. This represents a novel mechanism both for the regulation of SP-D function and NO's role in innate immunity, but also demonstrates that the S-nitrosylation can control protein function by regulating quaternary structure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.  相似文献   

11.
12.

Back ground

Stress-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2α), involved in translation, promotes cell suicide or survival. Since multiple signaling pathways are implicated in cell death, the present study has analyzed the importance of PKC activation in the stress-induced eIF2α phosphorylation, caspase activation and cell death in the ovarian cells of Spodoptera frugiperda (Sf9) and in their extracts.

Methods

Cell death is analyzed by flow cytometry. Caspase activation is measured by Ac-DEVD-AFC hydrolysis and also by the cleavage of purified recombinant PERK, an endoplasmic reticulum-resident eIF2α kinase. Status of eIF2α phosphorylation and cytochrome c levels are analyzed by western blots.

Results

PMA, an activator of PKC, does not promote cell death or affect eIF2α phosphorylation. However, PMA enhances late stages of UV-irradiation or cycloheximide-induced caspase activation, eIF2α phosphorylation and apoptosis in Sf9 cells. PMA also enhances cytochrome c-induced caspase activation and eIF2α phosphorylation in cell extracts. These changes are mitigated more efficiently by caspase inhibitor, z-VAD-fmk, than by calphostin, an inhibitor of PKC. In contrast, tunicamycin-induced eIF2α phosphorylation that does not lead to caspase activation or cell death is unaffected by PMA, z-VAD-fmk or by calphostin.

Conclusions

While caspase activation is a cause and consequence of eIF2α phosphorylation, PKC activation that follows caspase activation further enhances caspase activation, eIF2α phosphorylation, and cell death in Sf9 cells.

General significance

Caspases can activate multiple signaling pathways to enhance cell death.  相似文献   

13.

Background

Atherosclerosis is one of the major complications of diabetes, which may result from insulin resistance via mitochondrial dysfunction. Although a strong association between insulin resistance and cardiovascular disease has been suggested, it is not clear yet whether stress-inducing factors damage mitochondria and insulin signaling pathway in cardiovascular tissues.

Methods

We investigated whether stress-induced mitochondrial dysfunction might alter the insulin/Akt signaling pathway in A10 rat vascular smooth muscle cells (VSMC).

Results

The treatment of oxidized low density lipoprotein (oxLDL) decreased ATP contents, mitochondrial respiration activity, mRNA expressions of OXPHOS subunits and IRS-1/2 and insulin-mediated phosphorylations of Akt and AMP-activated protein kinase (AMPK). Similarly, dideoxycytidine (ddC), the mtDNA replication inhibitor, or rotenone, OXPHOS complex I inhibitor, inhibited the insulin-mediated pAkt while increased pAMPK regardless of insulin. Reciprocally, an inhibitor of Akt, triciribine (TCN), decreased cellular ATP contents. Overexpression of Akt dominant positive reversed the oxLDL- or ddC-mediated ATP decrease but AMPK activator did not. Akt activation also normalized the aberrant VSMC migration induced by ddC.

Conclusions

Defective insulin signaling and mitochondrial function may collectively contribute to developing cardiovascular disease.

General significance

Akt may be a possible therapeutic target for treating insulin resistance-associated atherosclerosis.  相似文献   

14.

Background

The present study was aimed at isolating an antidiabetic molecule from a herbal source and assessing its mechanism of action.

Methods

Embelin, isolated from Embelia ribes Burm. (Myrsinaceae) fruit, was evaluated for its potential to regulate insulin resistance, alter β-cell dysfunction and modulate key markers involved in insulin sensitivity and glucose transport using high-fat diet (HFD) fed-streptozotocin (STZ) (40 mg/kg)-induced type 2 diabetic rats. Molecular-dockings were performed to investigate the binding modes of embelin into PPARγ, PI3K, p-Akt and GLUT4 active sites.

Results

Embelin (50 mg/kg b wt.) reduced body weight gain, blood glucose and plasma insulin in treated diabetic rats. It further modulated the altered lipid profiles and antioxidant enzymes with cytoprotective action on β-cell. Embelin significantly increased the PPARγ expression in epididymal adipose tissue compared to diabetic control group; it also inhibited adipogenic activity; it mildly activated PPARγ levels in the liver and skeletal muscle. It also regulated insulin mediated glucose uptake in epididymal adipose tissue through translocation and activation of GLUT4 in PI3K/p-Akt signaling cascade. Embelin bound to PPARγ; it disclosed stable binding affinities to the active sites of PI3K, p-Akt and GLUT4.

Conclusions

These findings show that embelin could improve adipose tissue insulin sensitivity without increasing weight gain, enhance glycemic control, protect β-cell from damage and maintain glucose homeostasis in adipose tissue.

General significance

Embelin can be used in the prevention and treatment of type 2 diabetes mellitus caused due to obesity.  相似文献   

15.

Background

5′-Nitro-indirubinoxime (5′-NIO) is a new derivative of indirubin that exhibits anti-cancer activity in a variety of human cancer cells. However, its mechanism has not been fully clarified.

Methods

Human salivary gland adenocarcinoma (SGT) cells were used in this study. Western blot and RT-PCR analyses were performed to determine cellular Notch levels. The cell cycle stage and level of apoptosis were analyzed using flow cytometry analysis.

Results

5′-NIO significantly inhibited the mRNA levels of Notch-1 and Notch-3 and their ligands (Delta1, 2, 3, and Jagged-2) in SGT cells. Immunocytochemistry analysis showed that 5′-NIO specifically decreased the level of Notch-1 in the nucleus. In addition, 5′-NIO induced G1 cell cycle arrest by reducing levels of CDK4 and CDK6 in SGT cells. Using flow cytometry and immunoblotting analysis, we found that 5′-NIO induces apoptosis following the secretion of cytochrome c and the activation of caspase-3 and caspase-7. Intracellular Notch-1 overexpression led to a decrease in G1 phase arrest and an inhibition of 5′-NIO-induced apoptosis.

Conclusion

These observations suggest that 5′-NIO induces cell cycle arrest and apoptosis by down-regulating Notch-1 signaling.

General significance

This study identifies a new mechanism of 5′-NIO-mediated anti-tumor properties. Thus, 5′-NIO could be used as a candidate for salivary gland adenocarcinoma therapeutics.  相似文献   

16.
17.

Background

The proven immunomodulatory and immune system activating properties of Ecklonia cava (E. cava) have been attributed to its plentiful polysaccharide content. Therefore, we investigated whether the sulfated polysaccharide (SP) of E. cava specifically activates the protein kinases (MAPKs) and nuclear factor-κB (NFκB) to incite immune responses.

Methods

To assess immune responsiveness, lymphocytes were isolated from spleens of ICR mice and cultured with SP and its inhibitors. Assays included 3H-thymidine incorporation, flow cytometry, real time polymerase chain reaction (rtPCR), enzyme linked immunosorbent assay (ELISA), intracellular cytokine assay, Western blot, and electrophoretic mobility shift assay (EMSA).

Results

SP dose-dependently increased the proliferation of lymphocytes without cytotoxicity. In particular, SP markedly enhanced the proliferation and differentiation of CD3+ mature T cells and CD45R/B220+ pan B cells. Additionally, SP increased the expression and/or production of IL-2, IgG1a, and IgG2b compared to that in untreated cells. The subsequent application of JNK (SP600125), NFκB (PDTC), and serine protease (TPCK) inhibitors significantly inhibited the proliferation and IL-2 production of SP-treated lymphocytes as well as the phosphorylation of JNK and IκB, the activation of nuclear NFκB p65, and binding of NFκB p65 DNA. Moreover, co-application of both JNK and NFκB inhibitors completely blocked the proliferation of lymphocytes even in the presence of SP.

Conclusion

These results suggest that SP induced T and B cell responses via both JNK and NFκB pathways.

General significance

The effect of SP on splenic lymphocyte activation was assayed here for the first time and indicated the underlying functional mechanism.  相似文献   

18.

Background

IP3-mediated calcium mobilization from intracellular stores activates and translocates PKC-α from cytosol to membrane fraction in response to STa in COLO-205 cell line. The present study was undertaken to determine the involvement of cytoskeleton proteins in translocation of PKC-α to membrane from cytosol in the Escherichiacoli STa-mediated signaling cascade in a human colonic carcinoma cell line COLO-205.

Methods

Western blots and consequent densitometric analysis were used to assess time-dependent redistribution of cytoskeletal proteins. This redistribution was further confirmed by using confocal microscopy. Pharmacological reagents were applied to colonic carcinoma cells to disrupt the microfilaments (cytochalasin D) and microtubules (nocodazole).

Results

STa treatment in COLO-205 cells showed dynamic redistribution and an increase in actin content in the Triton-insoluble fraction, which corresponds to an increase in polymerization within 1 min. Moreover, pharmacological disruption of actin-based cytoskeleton greatly disturbed PKC-α translocation to the membrane.

Conclusions

These results suggested that the organization of actin cytoskeleton is rapidly rearranged following E. coli STa treatment and the integrity of the actin cytoskeleton played a crucial role in PKC-α movement in colonic cells. Depolymerization of tubulin had no effect on the ability of the kinase to be translocated to the membrane.

General significance

In the present study, we have shown for the first time that in colonic carcinoma cells, STa-mediated rapid changes of actin cytoskeleton arrangement might be involved in the translocation of PKC-α to membrane.  相似文献   

19.

Background

Chondroitin sulfate (CS) is a ubiquitous component of the cell surface and extracellular matrix and its sugar backbone consists of repeating disaccharide units: D-glucuronic acid (GlcUA)β1-3N-acetyl-D-galactosamine (GalNAc). Although CS participates in diverse biological processes such as growth factor signaling and the nervous system's development, the mechanism underlying the functions is not well understood.

Methods

CS was isolated from ray fish cartilage, an industrial waste, and its structure and neurite outgrowth-promoting (NOP) activity were analyzed to investigate a potential application to nerve regeneration.

Results

The major disaccharide unit in the CS preparation was GlcUA-GalNAc(6-O-sulfate) (61.9%). Minor proportions of GlcUA-GalNAc(4-O-sulfate) (27.0%), GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate) (8.5%), and GlcUA-GalNAc (2.7%) were also detected. The preparation showed NOP activity in vitro, and this activity was suppressed by antibodies against hepatocyte growth factor (HGF) and its receptor c-Met, suggesting the involvement of the HGF signaling pathway in the expression of the in vitro NOP activity of the CS preparation. The specific binding of HGF to the CS preparation was also demonstrated by surface plasmon resonance spectroscopy.

Conclusions and general significance

The NOP activity of CS from ray cartilage was demonstrated to be expressed through the HGF signaling pathway, suggesting that ray cartilage CS may be useful for studying the cooperative function of CS and HGF.  相似文献   

20.

Background

β-Glucans obtained from fungi, such as baker's yeast (Saccharomyces cerevisiae)-derived β-glucan (BBG), potently activate macrophages through nuclear factor κB (NFκB) translocation and activation of its signaling pathways. The mechanisms by which β-glucans activate these signaling pathways differ from that of lipopolysaccharide (LPS). However, the effects of β-glucans on LPS-induced inflammatory responses are poorly understood. Here, we examined the effects of BBG on LPS-induced inflammatory responses in RAW264.7 mouse macrophages.

Methods

We explored the actions of BBG in RAW264.7 macrophages.

Results

BBG inhibited LPS-stimulated nitric oxide (NO) production in RAW264.7 macrophages by 35–70% at concentrations of 120–200 μg/ml. BBG also suppressed mRNA and protein expression of LPS-induced inducible NO synthase (iNOS) and mitogen-activated protein kinase phosphorylation, but not NFκB activation. By contrast, a neutralizing antibody against dectin-1, a β-glucan receptor, did not affect BBG-mediated inhibition of NO production. Meanwhile, BBG suppressed Pam3CSK-induced NO production. Moreover, BBG suppressed LPS-induced production of pro-and anti-inflammatory cytokines, including interleukin (IL)-1α, IL-1ra, and IL-27.

Conclusions

Our results indicate that BBG is a powerful inhibitor of LPS-induced NO production by downregulating iNOS expression. The mechanism involves inactivation of mitogen-activated protein kinase and TLR2 pathway, but is independent of dectin-1.

General significance

BBG might be useful as a novel agent for the chemoprevention of inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号