共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
Sphingolipid regulation of ezrin,radixin, and moesin proteins family: Implications for cell dynamics
Mohamad Adada Daniel Canals Yusuf A. Hannun Lina M. Obeid 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(5):727-737
A key but poorly studied domain of sphingolipid functions encompasses endocytosis, exocytosis, cellular trafficking, and cell movement. Recently, the ezrin, radixin and moesin (ERM) family of proteins emerged as novel potent targets regulated by sphingolipids. ERMs are structural proteins linking the actin cytoskeleton to the plasma membrane, also forming a scaffold for signaling pathways that are used for cell proliferation, migration and invasion, and cell division. Opposing functions of the bioactive sphingolipid ceramide and sphingosine-1-phosphate (S1P), contribute to ERM regulation. S1P robustly activates whereas ceramide potently deactivates ERM via phosphorylation/dephosphorylation, respectively. This recent dimension of cytoskeletal regulation by sphingolipids opens up new avenues to target cell dynamics, and provides further understanding of some of the unexplained biological effects mediated by sphingolipids. In addition, these studies are providing novel inroads into defining basic mechanisms of regulation and action of bioactive sphingolipids. This review describes the current understanding of sphingolipid regulation of the cytoskeleton, it also describes the biologies in which ERM proteins have been involved, and finally how these two large fields have started to converge. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology. 相似文献
3.
4.
In the central nervous system, a multilayered membrane layer known as the myelin sheath enwraps axons, and is required for optimal saltatory signal conductance. The sheath develops from membrane processes that extend from the plasma membrane of oligodendrocytes and displays a unique lipid and protein composition. Myelin biogenesis is carefully regulated, and multiple transport pathways involving a variety of endosomal compartments are involved. Here we briefly summarize how the major myelin proteins proteolipid protein and myelin basic protein reach the sheath, and highlight potential mechanisms involved, including the role of myelin specific lipids and cell polarity related transport pathways. 相似文献
5.
Elizabeth J. TarlingPeter A. Edwards 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(3):386-395
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
6.
Lushchak VI 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2011,153(2):175-190
Reactive oxygen species (ROS) are continuously produced and eliminated by living organisms normally maintaining ROS at certain steady-state levels. Under some circumstances, the balance between ROS generation and elimination is disturbed leading to enhanced ROS level called "oxidative stress". The primary goal of this review is to characterize two principal mechanisms of protection against oxidative stress - regulation of membrane permeability and antioxidant potential. The ancillary goals of this work are to describe up to date knowledge on the regulation of the previously mentioned mechanisms and to identify areas of prospective research and emerging directions in investigation of adaptation to oxidative stress. The ubiquity for challenges leading to oxidative stress development calls for identification of common mechanisms. They are cysteine residues and [Fe,S]-clusters of specific regulatory proteins. The latter mechanism is realized via SoxR bacterial protein, whereas the former mechanism is involved in operation of bacterial OxyR regulon, yeast H(2)O(2)-stimulon, plant NPR1/TGA and Rap2.4a systems, and animal Keap1/Nrf2, NF-κB and AP-1, and others. Although hundreds of studies have been carried out in the field with different taxa, the comparative analysis of adaptive response is quite incomplete and therefore, this work aims to cover a plethora of phylogenetic groups to delineate common mechanisms. In addition, this article raises some questions to be elucidated and points out future directions of this research. The comparative approach is used to shed light on fundamental principles and mechanisms of regulation of antioxidant systems. The idea is to provide starting points from which we can develop novel tools and hypothesis to facilitate meaningful investigations in the physiology and biochemistry of organismic response to oxidative stress. 相似文献
7.
An increasing body of evidence suggested that intracellular lipid metabolism is dramatically perturbed in various cardiovascular and neurodegenerative diseases with genetic and lifestyle components (e.g., dietary factors). Therefore, a lipidomic approach was also developed to suggest possible mechanisms underlying Alzheimer’s disease (AD). Neural membranes contain several classes of glycerophospholipids (GPs), that not only constitute their backbone but also provide the membrane with a suitable environment, fluidity, and ion permeability. In this review article, we focused our attention on GP and GP-derived lipid mediators suggested to be involved in AD pathology. Degradation of GPs by phospholipase A2 can release two important brain polyunsaturated fatty acids (PUFAs), e.g., arachidonic acid and docosahexaenoic acid, linked together by a delicate equilibrium. Non-enzymatic and enzymatic oxidation of these PUFAs produces several lipid mediators, all closely associated with neuronal pathways involved in AD neurobiology, suggesting that an interplay among lipids occurs in brain tissue. In this complex GP meshwork, the search for a specific modulating enzyme able to shift the metabolic pathway towards a neuroprotective role as well as a better knowledge about how lipid dietary modulation may act to slow the neurodegenerative processes, represent an essential step to delay the onset of AD and its progression. Also, in this way it may be possible to suggest new preventive or therapeutic options that can beneficially modify the course of this devastating disease. 相似文献
8.
9.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes. 相似文献