首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Given that lung cancer is the second leading cause of cancer-related deaths with low survival rates, the project was aimed to formulate an efficient drug with minimum side effects, and rationalize its action mechanistically.

Methods

Mitochondria deficient cells, shRNA-mediated BCL2 and ATM depleted cells and pharmacological inhibition of DNA-damage response proteins were employed to explore the signaling mechanism governed between nucleus and mitochondria in response to mal C.

Results

Mal C decreased cell viability in three lung carcinoma cells, associated with DNA damage, p38-MAPK activation, imbalance in BAX/BCL2 expression, mitochondrial dysfunction and cytochrome-c release. Mitochondria depletion and p38-MAPK inhibition made A549 cells extremely resistant, but BCL2 knock-down partially sensitized the cells to mal C treatment. The mal C-induced apoptosis in A549 cells was initiated by DNA single strand breaks that led to double strand breaks (DSBs). DSB generation paralleled the induction of ATM- and ATR-mediated CHK1 phosphorylation. ATM silencing and ATR inhibition partially attenuated the mal C-induced p38-MAPK activation, CHK1 phosphorylation and apoptosis, which were completely suppressed by CHK1 inhibition.

Conclusions

Mal C activates the ATM-CHK1-p38 MAPK cascade to cause mitochondrial cell death in lung carcinoma cells.

General significance

Given that mal C has appreciable natural abundance and is non-toxic to mice, further in vivo evaluation would help in establishing its anti-cancer property.  相似文献   

3.
In the present study, the role of a fimbrial galactose-specific adhesin of the T7 strain of enteroaggregative Escherichia coli (EAEC-T7) in the signal transduction pathways in human small intestinal epithelial cells (INT-407) was explored. The adhesin was purified by anion exchange chromatography using a Mono Q HR5/5 column in the AKTA purifier system. The characteristic stacked brick pattern of aggregative adherence of EAEC-T7 to INT-407 cells was found to be inhibited in the presence of immunoglobulin G against the purified adhesin as well as d -galactose. The adhesin induced a significant increase in the intracellular calcium concentration [Ca2+]i in INT-407 cells, which was reduced in the presence of dantrolene (inhibitor of intracellular calcium stores), verapamil, calciseptin (calcium channel blockers) as well as neomycin [inhibitor of phospholipase C (PLC)]. Further, an increased level of PLCγ1 and inositol 1,4,5-tri phosphate as well as enhanced activity of protein kinase C (PKC) in the adhesin-stimulated cells were found to be downregulated in the presence of neomycin and U73122 (inhibitors of PLC) and H-7 (inhibitor of PKC), respectively. The adhesin could also induce interleukin-8 secretion from INT-407 cells, which was inhibited in the presence of dantrolene as well as staurosporin (inhibitor of PKC). Collectively, our results have suggested that the galactose-specific adhesin-induced signal transduction pathway might play a crucial role in the EAEC-induced pathogenesis.  相似文献   

4.

Background

The commercially important glycoside hydrolase family 3 (GH3) β-glucosidases from Aspergillus niger are anomeric-configuration-retaining enzymes that operate through the canonical double-displacement glycosidase mechanism. Whereas the catalytic nucleophile is readily identified across all GH3 members by sequence alignments, the acid/base catalyst in this family is phylogenetically variable and less readily divined.

Methods

In this report, we employed three-dimensional structure homology modeling and detailed kinetic analysis of site-directed mutants to identify the catalytic acid/base of a GH3 β-glucosidase from A. niger ASKU28.

Results

In comparison to the wild-type enzyme and other mutants, the E490A variant exhibited greatly reduced kcat and kcat/Km values toward the natural substrate cellobiose (67,000- and 61,000-fold, respectively). Correspondingly smaller kinetic effects were observed for artificial chromogenic substrates p-nitrophenyl β-d-glucoside and 2,4-dinitrophenyl β-d-glucoside, the aglycone leaving groups of which are less dependent on acid catalysis, although changes in the rate-determining catalytic step were revealed for both. pH-rate profile analyses also implicated E490 as the general acid/base catalyst. Addition of azide as an exogenous nucleophile partially rescued the activity of the E490A variant with the aryl β-glucosides and yielded β-glucosyl azide as a product.

Conclusions and general significance

These results strongly support the assignment of E490 as the acid/base catalyst in a β-glucosidase from A. niger ASKU28, and provide crucial experimental support for the bioinformatic identification of the homologous residue in a range of related GH3 subfamily members.  相似文献   

5.

Aims

Chronic myelogenous leukemia is a clonal malignancy of the pluripotent hematopoietic stem cells that is characterized by the uncontrolled proliferation and expansion of myeloid progenitors. Myeloid progenitors express the fusion oncogene BCR–ABL, which has uncontrollable activity in malignant cells and prevents the cell apoptosis caused by some antineoplastic agents, such as paclitaxel. Targeting these abnormalities by blocking the tyrosine kinase enzymes of BCR–ABL is a promising approach for chronic myelogenous leukemia therapy.

Main methods

Conventional Liu's staining is an auxiliary technique used in microscopy to enhance the contrast in microscopic images, aiding the observation of cell morphology. The MTT assay, flow cytometry of the sub-G1 analysis and the TUNEL assay were applied to estimate the apoptosis levels. RT-PCR and western blot methods were used to evaluate the key molecules conferring anti-cell-death properties.

Key findings

The effects of the tyrosine kinase inhibitor AG1024 were evaluated with regard to the regulation of BCR–ABL expression, inhibition of cell proliferation, and enhanced paclitaxel-induced apoptosis in BCR–ABL-expressing K562 cell lines. AG1024 downregulated the expression of BCR–ABL and anti-apoptosis factors, such as Bcl-2 and Bcl-xL, which were present in K562 cells. Moreover, the combination of AG1024 with paclitaxel inhibited cell proliferation and enhanced paclitaxel-induced apoptosis within 24 h.

Significance

In summary, the present study shows that the combination of AG1024 with paclitaxel inhibited model cancer cell proliferation, suggesting a new use of paclitaxel-based chemotherapy for cancer control.  相似文献   

6.

Background

JAK2/STAT3 pathway was reported to play an essential role in the neointima formation after vascular intima injury. However, little is known regarding this pathway to the whole layer injury after end-to-end arterial anastomosis (AA). Here, we investigated the role of JAK2/STAT3 pathway in common carotid arterial (CCA) anastomosis-induced cell proliferation, phenotypic change of vascular smooth muscle cells (VSMCs) and re-endothelialization.

Methods

CCAs of adult male Wistar rats were resected at 3, 7, 14, and 30 days after end-to-end CCA anastomosis. Activation of JAK2/STAT3 pathway was detected by Western blotting and Immunofluorescence, and expression of proliferating cell nuclear antigen (PCNA) was detected by Q-PCR and Western blotting. Under the treatment with AG490 (a JAK2 inhibitor), protein levels of JAK2, STAT3 and PCNA, morphological changes of artery, phenotypic change of VSMCs, and re-endothelialization were measured by Western blotting, H&E, Q-PCR, and Evans blue staining respectively.

Results

The protein levels of p-JAK2, p-STAT3, and PCNA were up-regulated, peaked on the 7th day in the vessel wall after AA. AG490 down-regulated the levels of p-JAK2, p-STAT3, and PCNA on the 7th-day-group, resulting in reduced vessel wall proliferation on the 7th and 14th day after AA. Besides, AG490 switched the phenotypic change of VSMCs after AA representing inhibited mRNA levels of synthetic phase markers (osteopoitin and SMemb) and up-regulated contractile phase markers (ASMA, SM2 and SM22α). Furthermore, AG490 did not affect the re-endothelialization process on all indicated time points after AA (the 3rd, 7th, 14th, and 30th day).

Conclusion

Our study indicated that JAK2/STAT3 signaling pathway played an important role on cell proliferation of the injured vessel wall, and probably a promising target for the exploration of drugs increasing the patency or reducing the vascular narrowness after AA.  相似文献   

7.

Background

Although some reciprocal glycolysis–respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized.

Methods

We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions.

Results

Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased.

Conclusions

These data document a novel intracellular glycolysis–respiration effect in which restricting glycolysis flux increases mitochondrial respiration.

General significance

Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis–respiration effect can practically inform the development of new mitochondrial medicine approaches.  相似文献   

8.

Objective

The aim of this study was to determine whether ATP-binding cassette transporter A1 (ABCA1) was up-regulated by growth differentiation factor-15 (GDF-15) via the phosphoinositide 3-kinase (PI3K)/protein kinase Cζ (PKCζ)/specificity protein 1 (SP1) pathway in THP-1 macrophages.

Methods and results

We investigated the effects of different concentrations of GDF-15 on ABCA1 expression in THP-1 macrophages. The results showed that GDF-15 dramatically increased cholesterol efflux and decreased cellular cholesterol levels. In addition, GDF15 increased ABCA1 mRNA and protein levels. The effects of GDF-15 on ABCA1 protein expression and cellular cholesterol efflux were abolished by wither inhibition or depletion of PI3K, PKCζ and SP1, respectively, suggesting the potential roles of PI3K, PKCζ and SP1 in ABCA1 expression. Taken together, GDF-15 appears to activate PI3K, PKCζ and SP1 cascade, and then increase ABCA1 expression, thereby promoting cholesterol efflux and reducing foam cell formation.

Conclusion

Our results suggest that GDF-15 has an overall protective effect on the progression of atherosclerosis, likely through inducing ABCA1 expression via the PI3K/PKCζ/SP1 signaling pathway and enhancing cholesterol efflux.  相似文献   

9.

Background

The tumor-associated antigen 90K (TAA90K)/Mac-2-binding protein is expressed at elevated level in cancerous tissues and associated with poor prognosis. Since TAA90K has been implicated in the restructuring of the extracellular matrix, we examined the functional relationship between colon cancer cell-derived TAA90K and the matrix metalloproteinase (MMP) promatrilysin (proMMP-7), and also tested whether TAA90K is a novel substrate for MMPs-2, -7 and -9.

Methods

The effect of TAA90K on proMMP-7 levels in HT-29 conditioned media was quantified by enzyme-linked immunosorbent assays. Binding of TAA90K to MMPs, extracellular matrix proteins and galectin-3 was measured by solid-phase binding assays. Proteolytic cleavage of TAA90K by MMPs was documented by SDS-PAGE and protein sequencing analysis.

Results

TAA90K enhanced extracellular levels of proMMP-7 in HT-29 cells. In addition, TAA90K was cleaved by MMPs-2, -7 and -9. MMP-7-mediated cleavage of TAA90K did not affect its binding to MMP-7, laminin-1, collagen IV and galectin-3 but reduced its interaction with fibronectin and laminin-10, and lowered the levels of proMMP-7 in the HT-29 medium.

Conclusion

TAA90K is a novel substrate for MMPs-2, -7 and -9 and modulates proMMP-7 levels in colon cancer cells.

General significance

Proteolytic cleavage of TAA90K may have functional implications in colon cancer.  相似文献   

10.

Background

Prokaryotic lectins offer significant advantages over eukaryotic lectins for the development of enhanced glycoselective tools. Amenability to recombinant expression in Escherichia coli simplifies their production and presents opportunities for further genetic manipulation to create novel recombinant prokaryotic lectins (RPLs) with altered or enhanced carbohydrate binding properties. This study explored the potential of the α-galactophilic PA-IL lectin from Pseudomonas aeruginosa for use as a scaffold structure for the generation of novel RPLs.

Method

Specific amino acid residues in the carbohydrate binding site of a recombinant PA-IL protein were randomly substituted by site-directed mutagenesis. The resulting expression clones were then functionally screened to identify clones expressing rPA-IL proteins with altered carbohydrate binding properties.

Results

This study generated RPLs exhibiting diverse carbohydrate binding activities including specificity and high affinity for β-linked galactose and N-acetyl-lactosamine (LacNAc) displayed by N-linked glycans on glycoprotein targets. Key amino acid substitutions were identified and linked with specific carbohydrate binding activities. Ultimately, the utility of these novel RPLs for glycoprotein analysis and for selective fractionation and isolation of glycoproteins and their glycoforms was demonstrated.

Conclusions

The carbohydrate binding properties of the PA-IL protein can be significantly altered using site-directed mutagenesis strategies to generate novel RPLs with diverse carbohydrate binding properties.

General significance

The novel RPLs reported would find a broad range of applications in glycobiology, diagnostics and in the analysis of biotherapeutics. The ability to readily produce these RPLs in gram quantities could enable them to find larger scale applications for glycoprotein or biotherapeutic purification.  相似文献   

11.

Background

Tyrosin kinase inhibitors (TKIs) and monoclonal antibodies aimed to target epidermal growth factor receptor (EGFR) have shown limited effect as monotherapies and drug resistance is a major limitation for therapeutic success. Adjuvant therapies to EGFR targeting therapeutics are therefore of high clinical relevance.

Methods

Three EGFR targeting drugs, Cetuximab, Erlotinib and Tyrphostin AG1478 were used in combination with photodynamic therapy (PDT) in two EGFR positive cell lines, A-431 epidermoid skin carcinoma and WiDr colorectal adenocarcinoma cells. The amphiphilic meso-tetraphenylporphine with 2 sulphonate groups on adjacent phenyl rings (TPPS2a) was utilized as a photosensitizer for PDT. The cytotoxic outcome of the combined treatments was evaluated by cell counting and MTT. Cellular signalling was explored by Western blotting.

Results

PDT as neoadjuvant to Tyrphostin in A-431 cells as well as to Tyrphostin or Erlotinib in WiDr cells revealed synergistic cytotoxicity. In contrast, Erlotinib or Cetuximab combined with neoadjuvant PDT induced an antagonistic effect on cell survival of A-431 cells. Neoadjuvant PDT and EGFR targeting therapies induced a synergistic inhibition of ERK as well as synergistic cytotoxicity only when the EGFR targeting monotherapies caused a prolonged ERK inhibition. There were no correlation between EGFR inhibition by the EGFR targeting monotherapies or the combined therapies and the cytotoxic outcome combination-therapies.

Conclusions

The results suggest that sustained ERK inhibition by EGFR targeting monotherapies is a predictive factor for synergistic cytotoxicity when combined with neoadjuvant PDT.

General significance

The present study provides a rationale for selecting anticancer drugs which may benefit from PDT as adjuvant therapy.  相似文献   

12.

Background

In addition to their physiologic effects in inflammation and angiogenesis, chemokines are involved in cancer pathology. The CXC-chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 mediates its biological activities through activation of G protein-coupled receptor CXCR4 and binds to glycosaminoglycans (GAGs).

Methods

Using Bio-coat cell migration chambers, specific antagonists, flow cytometry and RNA interference, we evaluate the involvement of heparan sulfate proteoglycans (HSPG) in the SDF-1/CXCL12-induced invasion of human cervix epitheloid carcinoma HeLa cells.

Results

The SDF-1/CXCL12-induced cell invasion is dependent on CXCR4. Furthermore, Protein Kinase C delta (PKC δ) and c-jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) are implicated in this event, but not extracellular signal-regulated kinase (ERK) 1/2. Moreover, the invasion of HeLa cells induced by SDF-1/CXCL12 was dependent on matrix metalloproteinase-9 (MMP-9). The pre-incubation of HeLa cells with heparin or with anti-heparan sulfate antibodies or with β-d-xyloside inhibited SDF-1/CXCL12-mediated cell invasion. Furthermore, the down-regulation of syndecan-4, a heparan sulfate proteoglycan, decreased SDF-1/CXCL12-mediated HeLa cell invasion. GAGs, probably on syndecan-4, are involved in SDF-1/CXCL12-mediated cell chemotaxis.

General significance

These data suggest that targeting the glycosaminoglycan/chemokine interaction could be a new therapeutic approach for carcinomas in which SDF-1/CXCL12 is involved.  相似文献   

13.

Background

Melatonin is well-established as a powerful reducing agent of oxidant generated in the cell medium. We aimed to investigate how readily melatonin is oxidized by peroxyl radicals ROO⋅ generated by the thermolysis of 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH) and the role of glutathione (GSH) during the reaction course.

Methods

Chromatographic, mass spectroscopy, and UV–visible spectrometric techniques were used to study the oxidation of melatonin by ROO⋅ or horseradish peroxidase (HRP)/H2O2. Our focus was the characterization of products and the study of features of the reaction.

Results

We found that N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and a monohydroxylated derivative of melatonin were the main products of the reaction between melatonin and ROO⋅. Higher pH or saturation of the medium with molecular oxygen increased the yield of AFMK but did not affect the reaction rate. Melatonin increased the depletion of intracellular GSH mediated by AAPH. Using the HRP/H2O2 as the oxidant system, the addition of melatonin promoted the oxidation of GSH to GSSG.

Conclusions

These results show, for the first time, that melatonin radical is able to oxidize GSH.

General significance

We propose that this new property of melatonin could explain or be related to the recently reported pro-oxidant activities of melatonin.  相似文献   

14.

Objectives

There are no data regarding the possible role of the single nucleotide polymorphism (SNP) of class I histone deacetylases (HDACs) in type 2 diabetes mellitus (DM). We designed this study to examine whether polymorphisms of HDACs can be implicated in that disease.

Methods

A community-based, case–control study was conducted, with a total of 568 subjects (284 patients and 284 controls) enrolled. Four polymorphisms of HDAC1 (rs1741981) and HDAC3 (rs11741808, rs2547547, rs2530223) were examined by the use of TaqMan technology.

Results

We found a significant association with risk of type 2 DM for three SNPs of HDAC3, including rs11741808 [odds ratio (OR) = 0.53, 95% confidence interval (CI): 0.35–0.81], rs2547547 [OR = 1.72, 95% CI: 1.13–2.64], and rs2530223 [OR = 1.39; 95% CI: 1.01–1.91]. Subgroup analysis showed that BMI ≥ 23 kg/m2, high triglyceride and high blood pressure, together with the rs11741808AG genotype, were associated with a significantly decreased risk for type 2 DM, with ORs of 0.50 (95% CI: 0.27–0.91), 0.38 (95% CI: 0.20–0.71) and 0.43 (95% CI: 0.24–0.76) compared with the AA genotype, respectively. In a population with normal total cholesterol, the AG genotype yielded a significantly decreased risk of type 2 DM risk, with an OR of 0.42 (95% CI: 0.25–0.70) when compared with the persons of the AA genotype. For rs2547547, in a population with normal total cholesterol and triglyceride, the AG genotype was associated with a significantly increased risk of type 2 DM, with ORs of 1.92 (95% CI: 1.17–3.15) and 2.24 (95% CI: 1.28–3.94) when compared with the population carrying the AA genotype.

Conclusions

The results suggest that variants of HDAC3 contribute to an increased prevalence of type 2 DM in the Chinese Han population.  相似文献   

15.

Background

Enteroaggregative Escherichia coli (EAEC) are defined by their stacked-brick adherence pattern to human epithelial cells. There is no all-encompassing genetic marker for EAEC. The category is commonly implicated in diarrhea but research is hampered by perplexing heterogeneity.

Methodology/Principal Findings

To identify key EAEC lineages, we applied multilocus sequence typing to 126 E. coli isolates from a Nigerian case-control study that showed aggregative adherence in the HEp-2 adherence assay, and 24 other EAEC strains from diverse locations. EAEC largely belonged to the A, B1 and D phylogenetic groups and only 7 (4.6%) isolates were in the B2 cluster. As many as 96 sequence types (STs) were identified but 60 (40%) of the EAEC strains belong to or are double locus variants of STs 10, 31, and 394. The remainder did not belong to predominant complexes. The most common ST complex, with predicted ancestor ST10, included 32 (21.3%) of the isolates. Significant age-related distribution suggests that weaned children in Nigeria are at risk for diarrhea from of ST10-complex EAEC. Phylogenetic group D EAEC strains, predominantly from ST31- and ST394 complexes, represented 38 (25.3%) of all isolates, include genome-sequenced strain 042, and possessed conserved chromosomal loci.

Conclusions/Significance

We have developed a molecular phylogenetic framework, which demonstrates that although grouped by a shared phenotype, the category of ‘EAEC’ encompasses multiple pathogenic lineages. Principal among isolates from Nigeria were ST10-complex EAEC that were associated with diarrhea in children over one year and ECOR D strains that share horizontally acquired loci.  相似文献   

16.
17.

Background

We previously demonstrated that the CC-chemokine Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES)/CCL5 exerts pro-tumoral effects on human hepatoma Huh7 cells through its G protein-coupled receptor, CCR1. Glycosaminoglycans play major roles in these biological events.

Methods

In the present study, we explored 1/ the signalling pathways underlying RANTES/CCL5-mediated hepatoma cell migration or invasion by the use of specific pharmacological inhibitors, 2/ the role of RANTES/CCL5 oligomerization in these effects by using a dimeric RANTES/CCL5, 3/ the possible involvement of two membrane heparan sulfate proteoglycans, syndecan-1 (SDC-1) and syndecan-4 (SDC-4) in RANTES/CCL5-induced cell chemotaxis and spreading by pre-incubating cells with specific antibodies or by reducing SDC-1 or -4 expression by RNA interference.

Results and conclusion

The present data suggest that focal adhesion kinase phosphorylation, phosphoinositide 3-kinase-, mitogen-activated protein kinase- and Rho kinase activations are involved in RANTES/CCL5 pro-tumoral effects on Huh7 cells. Interference with oligomerization of the chemokine reduced RANTES/CCL5-mediated cell chemotaxis. This study also indicates that SDC-1 and -4 may be required for HepG2, Hep3B and Huh7 human hepatoma cell migration, invasion or spreading induced by the chemokine. These results also further demonstrate the involvement of glycosaminoglycans as the glycosaminoglycan-binding deficient RANTES/CCL5 variant, in which arginine 47 was replaced by lysine, was devoid of effect.

General significance

The modulation of RANTES/CCL5-mediated cellular effects by targeting the chemokine-syndecan interaction could represent a new therapeutic approach for hepatocellular carcinoma.  相似文献   

18.

Aims

This study examined whether Castelli risk indexes 1 (total/high-density lipoprotein (HDL) cholesterol) and 2 (low density lipoprotein (LDL)/HDL cholesterol) and other shared metabolic disorders might underpin the pathophysiology of the metabolic syndrome, major depression or bipolar disorder.

Main methods

This cross-sectional study examined 92 major depressed, 49 bipolar depressed and 201 normal controls in whom the Castelli risk indexes 1 and 2 and key characteristics of the metabolic syndrome, i.e. waist/hip circumference, body mass index (BMI), systolic/diastolic blood pressure, total cholesterol, low-density lipoprotein (LDL) and HDL cholesterol, triglycerides, insulin, glucose, hemoglobin A1c (HbA1c) and homocysteine were assessed.

Key findings

Castelli risk indexes 1 and 2 were significantly higher in major depressed patients than in bipolar disorder patients and controls. There were no significant differences in waist or hip circumference, total and LDL cholesterol, triglycerides, plasma glucose, insulin, homocysteine and HbA1c between depression and bipolar patients and controls. Bipolar patients had a significantly higher BMI than major depressed patients and normal controls.

Significance

Major depression is accompanied by increased Castelli risk indexes 1 and 2, which may be risk factors for cardiovascular disease. Other key characteristics of the metabolic syndrome, either metabolic biomarkers or central obesity, are not necessarily specific to major depression or bipolar disorder.  相似文献   

19.

Objective

Lung cancer remains the most prevalent malignancy worldwide. Susceptibility to lung cancer has been shown to be modulated by inheritance of polymorphic genes. Several metabolic enzymes are currently under investigation for their possible role in lung cancer susceptibility, including members of the cytochrome P450 (CYP) superfamily. The aim of this work was to identify the correlation between CYP1A1 m1 and m2 polymorphisms and lung cancer risk and figure its interactions with smoking as genetic modifiers in the etiology of lung cancer in the Egyptian population.

Materials and methods

One hundred and ten patients with lung cancer and one hundred and ten controls were enrolled in the study. CYP1A1 m1 and m2 polymorphisms were determined using polymerase chain reaction restriction fragment length polymorphism.

Results

Subjects carrying TC and CC genotypes of CYP1A1 m1 and AG and GG genotypes of CYP1A1 m2 were significantly more likely to develop lung cancer especially squamous cell carcinoma. The proportion of lung cancer attributable to the interaction of smoking and CYP1A1 m1 and CYP1A1 m2 polymorphisms was 32% and 52% respectively.

Conclusion

Our results revealed that CYP1A1 m1 and m2 polymorphisms contribute to smoking related lung cancer risk in the Egyptian population.  相似文献   

20.

Background

Dicer is a multidomain ribonuclease III enzyme involved in the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs); depletion of Dicer was found to impair the migration of endothelial cells.

Methods

siRNA transfection, cell migration assay, real-time RT–PCR, chromatin immunoprecipitation, Western blotting, ELISA, caspase-3 activity assay, and annexin-V–FITC assay were utilized.

Results

Knockdown of Dicer impairs the migratory capacity of HEK293T cells and induces fibronectin-1. The upregulation of fibronectin-1 is dependent on Egr1. Fibronectin-1/Dicer double-knockdown cells showed a marked increase in apoptosis compared with fibronectin-1 single knockdown cells.

Conclusions

Decreased Dicer expression induces fibronectin-1 expression via an Egr1-dependent manner.

General significance

Our data suggest that upregulation of fibronectin-1 protects Dicer knockdown HEK293T cells against apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号