首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tumor-associated antigen 90K (TAA90K)/Mac-2-binding protein implicated in cancer progression and metastasis is modified by beta1-6 branched N-linked oligosaccharides in colon cancer cells, glycans shown to contribute to cancer metastasis. To elucidate the role of TAA90K in colon cancer, we examined its expression and function in human colon tumors and colon carcinoma cell lines. Immunohistochemical analyses of colon tumors revealed elevated expression of TAA90K in all samples analyzed compared to normal colon. To examine the function of TAA90K in colon cancer, we carried out protein and cell binding assays using TAA90K-His purified from HT-29 cells colon carcinoma cells infected with recombinant vaccinia virus expressing TAA90K containing a C-terminal poly-histidine tag. TAA90K-His bound to fibronectin, collagen IV, laminins-1, -5, and -10 and galectin-3 (Mac-2) but poorly to collagen I and galectin-1. As expected, binding of TAA90K to galectin-3 was dependent on carbohydrate since it was inhibitable by lactose and asiolofetuin, and a TAA90K-His glycoform purified from HT-29 cells treated with the glycosylation inhibitor 1-deoxymannojirimycin bound poorly to galectin-3. Unlike TAA90K isolated from other cell types, TAA90K-His isolated from colon cancer cells failed to mediate adhesion of colon cancer and normal cell lines, possibly due to cell-type specific glycosylation of TAA90K-His and/or its putative cellular receptor. However, at low concentrations, TAA90K-His enhanced galectin-3-mediated HT-29 cell adhesion while at high concentrations, it inhibited cell adhesion. Thus, a possible mechanism by which TAA90K may contribute to colon cancer progression is by modulating tumor cell adhesion to extracellular proteins, including galectin-3.  相似文献   

2.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

3.

Background

ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression.

Methods

Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules.

Results

EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF–EGFR axis is the main pathway affecting colon cancer's invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF–EGFR network. The EGF–EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2.

Conclusions and general significance

The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF–EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

4.

Background

Matrix metalloproteinases (MMPs) are a family of ubiquitously expressed zinc-dependent endopeptidases with broad substrate specificity and strictly regulated tissue specific expression. They are expressed in physiological situations and pathological conditions involving inflammation. MMPs regulate several functions related to inflammation including bioavailability and activity of inflammatory cytokines and chemokines. There is also evidence that MMPs regulate inflammation in tumor microenvironment, which plays an important role in cancer progression.

Scope of review

Here, we discuss the current view on the role of MMPs in the regulation of inflammation.

Major conclusions

MMPs modulate inflammation by regulating bioavailability and activity of cytokines, chemokines, and growth factors, as well as integrity of physical tissue barriers. MMPs are also involved in immune evasion of tumor cells and in regulation of inflammation in tumor microenvironment.

General significance

There is increasing evidence for non-matrix substrates of MMPs that are related to regulation of inflammatory processes. New methods have been employed for identification of the substrates of MMPs in inflammatory processes in vivo. Detailed information on the substrates of MMPs may offer more specific and effective ways of inhibiting MMP function by blocking the cleavage site in substrate or by inhibition of the bioactivity of the substrate. It is expected, that more precise information on the MMP–substrate interaction may offer novel strategies for therapeutic intervention in inflammatory diseases and cancer without blocking beneficial actions of MMPs. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

5.

Background

Dysregulation of apoptotic cell death is observed in a large number of pathological conditions. As caspases are central enzymes in the regulation of apoptosis, a large number of procaspase-activating compounds (PAC-1 derivatives) and inhibitors (isatin derivatives) have been developed. Matrix metalloproteinases (MMPs) have been shown to have a dual role in apoptosis. Hence compounds that either activate or inhibit caspases should ideally not affect MMPs. As many PAC-1 derivatives contain a zinc chelating ortho-hydroxy N-acyl hydrazone moiety and isatin derivatives has two carbonyl groups on the indole core, it was of interest to determine to which extent these compounds can inhibit MMPs.

Methods

Eight PAC-1 and five isatin derivatives were docked into MMP-9 and MMP-14. The same compounds were synthesized, characterized, purified and tested as inhibitors of MMP-9 and MMP-14, using fluorescence quenched peptide and biological substrates. Some of the compounds were also tested for fluorescence quenching.

Results

Molecular docking suggested that the different compounds can bind to the MMP active sites. However, kinetic studies showed that neither of these compounds was a strong MMP inhibitor. IC50 values over 100 μM were obtained after the enzyme activities were corrected for quenching. These IC50 values are far above the concentrations needed to activate or inhibit the caspases.

Conclusion

The use of PAC-1 and isatin derivatives against caspases should have little or no effect on the activity of MMPs.

General significance

Activators and inhibitors of caspases are important potential therapeutic agents for several diseases such as cancer, diabetes and neurodegenerative disorders.  相似文献   

6.

Background

Cleavage of aggrecan by ADAMTS proteinases at specific sites within highly conserved regions may be important to normal physiological enzyme functions, as well as pathological degradation.

Methods

To examine ADAMTS selectivity, we assayed ADAMTS-4 and -5 cleavage of recombinant bovine aggrecan mutated at amino acids N-terminal or C-terminal to the interglobular domain cleavage site.

Results

Mutations of conserved amino acids from P18 to P12 to increase hydrophilicity resulted in ADAMTS-4 cleavage inhibition. Mutation of Thr, but not Asn within the conserved N-glycosylation motif Asn-Ile-Thr from P6 to P4 enhanced cleavage. Mutation of conserved Thr residues from P22 to P17 to increase hydrophobicity enhanced ADAMTS-4 cleavage. A P4′ Ser377Gln mutant inhibited cleavage by ADAMTS-4 and -5, while a neutral Ser377Ala mutant and species mimicking mutants Ser377Thr, Ser377Asn, and Arg375Leu were cleaved normally by ADAMTS-4. The Ser377Thr mutant, however, was resistant to cleavage by ADAMTS-5.

Conclusion

We have identified multiple conserved amino acids within regions N- and C-terminal to the site of scission that may influence enzyme–substrate recognition, and may interact with exosites on ADAMTS-4 and ADAMTS-5.

General significance

Inhibition of the binding of ADAMTS-4 and ADAMTS-5 exosites to aggrecan should be explored as a therapeutic intervention for osteoarthritis.  相似文献   

7.

Background

There is a continuous demand for new immunosuppressive agents for organ transplantation. Galectin-9, a member of the galactoside-binding animal lectin family, has been shown to suppress pathogenic T-cell responses in autoimmune disease models and experimental allograft transplantation. In this study, an attempt has been made to develop new collagen matrices, which can cause local, contact-dependent immune suppression, using galectin-9 and collagen-binding galectin-9 fusion proteins as active ingredients.

Methods

Galectin-9 and galectin-9 fusion proteins having collagen-binding domains (CBDs) derived from bacterial collagenases and a collagen-binding peptide (CBP) were tested for their ability to bind to collagen matrices, and to induce Jurkat cell death in solution and in the collagen-bound state.

Results

Galectin-9-CBD fusion proteins exhibited collagen-binding activity comparable to or lower than that of the respective CBDs, while their cytocidal activity toward Jurkat cells in solution was 80 ~ 10% that of galectin-9. Galectin-9 itself exhibited oligosaccharide-dependent collagen-binding activity. The growth of Jurkat cells cultured on collagen membranes treated with galectin-9 was inhibited by ~ 90%. The effect was dependent on direct cell-to-membrane contact. Galectin-9-CBD/CBP fusion proteins bound to collagen membranes via CBD/CBP moieties showed a low or negligible effect on Jurkat cell growth.

Conclusions

Among the proteins tested, galectin-9 exhibited the highest cytocidal effect on Jurkat cells in the collagen-bound state. The effect was not due to galectin-9 released into the culture medium but was dependent on direct cell-to-membrane contact.

General significance

The study demonstrates the possible use of galectin-9-modified collagen matrices for local, contact-dependent immune suppression in transplantation.  相似文献   

8.
9.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

10.

Background

The interactions between metastatic breast cancer cells and host cells of osteoclastic lineage in bone microenvironment are essential for osteolysis. In vitro studies to evaluate pharmacological agents are mainly limited to their direct effects on cell lines. To mimic the communication between breast cancer cells and human osteoclasts, a simple and reproducible cellular model was established to evaluate the effects of zoledronate (zoledronic acid, ZOL), a bisphosphonate which exerts antiresorptive properties.

Methods

Human precursor osteoclasts were cultured on bone-like surfaces in the presence of stimuli (sRANKL, M-CSF) to ensure their activation. Furthermore, immature as well as activated osteoclasts were co-cultured with MDA-MB-231 breast cancer cells. TRAP5b and type I collagen N-terminal telopeptide (NTx) were used as markers. Osteoclasts’ adhesion to bone surface and subsequent bone breakdown were evaluated by studying the expression of cell surface receptors and certain functional matrix macromolecules in the presence of ZOL.

Results

ZOL significantly suppresses the precursor osteoclast maturation, even when the activation stimuli (sRANKL and M-SCF) are present. Moreover, it significantly decreases bone osteolysis and activity of MMPs as well as precursor osteoclast maturation by breast cancer cells. Additionally, ZOL inhibits the osteolytic activity of mature osteoclasts and the expression of integrin β3, matrix metalloproteinases and cathepsin K, all implicated in adhesion and bone resorption.

Conclusions

ZOL exhibits a beneficial inhibitory effect by restricting activation of osteoclasts, bone particle decomposition and the MMP-related breast cancer osteolysis.

General significance

The proposed cellular model can be reliably used for enhancing preclinical evaluation of pharmacological agents in metastatic bone disease.  相似文献   

11.

Background

Mammalian thioredoxin reductases (TrxR) are selenoproteins with important roles in antioxidant defense and redox regulation, principally linked to functions of their main substrates thioredoxins (Trx). All major forms of TrxR are intracellular while levels in serum are typically very low.

Methods

Serum TrxR levels were determined with immunoblotting using antibodies against mouse TrxR1 and total enzyme activity measurements were performed, with serum and tissue samples from mouse models of liver injury, as triggered by either thioacetamide (TAA) or carbon tetrachloride (CCl4).

Results

TrxR levels in serum increased upon treatment and correlated closely with those of alanine aminotransferase (ALT), an often used serum biomarker for liver damage. In contrast, Trx1, glutathione reductase, superoxide dismutase or selenium-containing glutathione peroxidase levels in serum displayed much lower increases than TrxR or ALT.

Conclusions

Serum TrxR levels are robustly elevated in mouse models of chemically induced liver injury.

General significance

The exaggerated TrxR release to serum upon liver injury may reflect more complex events than a mere passive release of hepatic enzymes to the extracellular milieu. It can also not be disregarded that enzymatically active TrxR in serum could have yet unidentified physiological functions.  相似文献   

12.

Background

Monitoring of thiopurine metabolites 6-thioguanine nucleotides (6-TGN) and 6-methylmercaptopurine (6-MMP) is used to assess compliance and explain adverse reactions in IBD-patients. Correlations between dosage, metabolite concentrations and therapeutic efficacy or toxicity are contradictive. Research is complicated by analytical problems as matrices analyzed and analytical procedures vary widely. Moreover, stability of thiopurine metabolites is not well documented, yet pivotal for interpretation of analytical outcomes. Therefore, we prospectively investigated metabolite stability in blood samples under standard storage conditions.

Methods

Stability at room temperature and refrigeration (22 °C, 4 °C) was investigated during 1 week and frozen samples (−20 °C, −80 °C) were analyzed during 6 months storage. Ten patient samples were analyzed for each study period.

Results

Median 6-TGN concentrations on day 7 decreased significantly to 53% and 90% during storage at ambient temperature or refrigeration. Median 6-MMP concentrations on day 7 decreased significantly to 55% and 86%, respectively. Samples stored at −20 °C also showed significant decreases in both 6-TGN and 6-MMP in comparison with baseline values. At −80 °C, only 6-MMP showed a significant decrease in values compared to baseline.

Conclusion

The stability of thiopurine metabolites is clearly a limiting factor in studies investigating utilisation of TDM and correlations with therapeutic outcome in IBD-patients. This has to be accounted for in clinical practice and (multi-center) trials investigating thiopurine drugs.  相似文献   

13.
14.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   

15.
16.

Background

Breast cancer–endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells.

Methods

To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties.

Results

BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome β5 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC.

Conclusions and general significance

BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

17.

Background

Numerous proteins and small leucine-rich proteoglycans (SLRPs) make up the composition of the extracellular matrix (ECM). Assembly of individual fibrillar components in the ECM, such as collagen, elastin, and fibronectin, is understood at the molecular level. In contrast, the incorporation of non-fibrillar components and their functions in the ECM are not fully understood.

Scope of review

This review will focus on the role of the matricellular protein thrombospondin (TSP) 2 in ECM assembly. Based on findings in TSP2-null mice and in vitro studies, we describe the participation of TSP2 in ECM assembly, cell–ECM interactions, and modulation of the levels of matrix metalloproteinases (MMPs).

Major conclusions

Evidence summarized in this review suggests that TSP2 can influence collagen fibrillogenesis without being an integral component of fibrils. Altered ECM assembly and excessive breakdown of ECM can have both positive and negative consequences including increased angiogenesis during tissue repair and compromised cardiac tissue integrity, respectively.

General significance

Proper ECM assembly is critical for maintaining cell functions and providing structural support. Lack of TSP2 is associated with increased angiogenesis, in part, due to altered endothelial cell–ECM interactions. Therefore, minor changes in ECM composition can have profound effects on cell and tissue function. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

18.

Background

The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some of these functions involve regulation by the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, the functions and exact nature of these interactions remain incomplete.

Methods

IGF-I variants PEGylated at lysines K27, K65 and K68, were assessed for binding to IGFBPs using BIAcore, and for phosphorylation of the IGF-IR. Furthermore, functional consequences of PEGylation were investigated using cell viability and migration assays. In addition, downstream signaling pathways were analyzed using phospho-AKT and phospho-ERK1/2 assays.

Results

IGF-I PEGylated at lysines 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) was employed. Receptor phosphorylation was similarly reduced 2-fold with PEG-K65 and PEG-K68 in 3T3 fibroblasts and MCF-7 breast cancer cells, whereas PEG-K27 showed a more than 10- and 3-fold lower activation for 3T3 and MCF-7 cells, respectively. In addition, all PEG-IGF-I variants had a 10-fold reduced association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes, whereas cell viability was fully preserved. Analysis of downstream signaling revealed that AKT was preferentially affected upon treatment with PEG-IGF-I variants whereas MAPK signaling was unaffected by PEGylation.

Conclusion

PEGylation of IGF-I has an impact on cell migration but not on cell viability.

General significance

PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on receptor interaction as well as key extracellular proteins such as VN and IGFBPs.  相似文献   

19.
20.

Background

Graves Disease (GD) is an autoimmune disorder affected by an interaction of multiple genes such as Nuclear Factor-κB (NF-κB), Nuclear Factor-κB Inhibitor (NF-κBIA), Poly (ADP-ribose) polymerase-1 (PARP-1) and cytokines like Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) and mostly accompanied by an ocular disorder, Graves Ophthalmopathy (GO). We hypothesize that there is a relationship between GD, GO, polymorphisms of inflammatory related genes and their association with cytokines, which may play important roles in autoimmune and inflammatory processes.

Subjects and methods

To confirm our hypothesis, we studied the polymorphisms and cytokine levels of 120 patients with GD and GO using PCR-RFLP and ELISA methods, respectively.

Results

We found that patients with GG genotype and carriers of G allele of PARP-1 G1672A polymorphism are at risk in the group having GD (p = 0.0007) while having GA genotype may be protective against the disease. PARP-1 C410T polymorphism was found to be associated with GO by increasing the risk by 1.7 times (p = 0.004). Another risk factor for development of GO was the polymorphism of del/ins of NFkB1 gene (p = 0.032) that increases the risk by 39%. Levels of cytokines were also elevated in patients with GD, but no association was found between levels of cytokines and the development of GO as there was no change in levels of cytokines.

Conclusions

We suggest that, PARP-1 and NFkB1 gene polymorphisms may be risk factors for developing Graves Disease and Ophthalmopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号