首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
UVB对水稻幼苗膜脂过氧化作用的影响   总被引:8,自引:0,他引:8  
UV-B处理的水稻幼苗,叶片的膜透性、O2-净产生速率及MDA含量显著增加。在UV-B处理初期,活性氧防御系统中的SOD和CAT活性比对照增强,但随着处理时间的延长,SOD和CAT活性明显下降;POD活性受UV-B处理抑制。这一结果表明,UV-B降低了细胞内活性氧自由基的清除能力,膜脂过氧化作用加剧,最终导致伤害效应。  相似文献   

2.
在生长房5种(暗处、可见光、低、中、高强度紫外线-B)处理下,研究了8个大豆品种的种子萌发率和萌发后幼苗的生长状况。结果表明,暗处种子萌发率高于自然当和UV-B辐射的种子。UV-B辐射增强对大豆种子的萌发率没有显著影响,仅使部分 品种的最大萌发率降低和导致部分品种达到最大萌发率的时间延长。幼苗的生长对增强的UV-B辐射非常敏感,使大部分品种的胚根变短增粗,这可能是植物激素作用的结果,大豆的叶绿素a、叶绿素b和总叶绿素含量明显受到UV-B辐射的抑制。UV-B作用能促进类黄酮在幼苗中的积累,紫外吸收色素的增设有利于提高对UV-B的抵抗力,UV-B辐射的这种效应及大豆种间的差异在自然情况下会产生深远的生物学和生态学意义。  相似文献   

3.
芦丁对绿豆幼苗营养生长的影响及其与IAA的相互作用   总被引:5,自引:0,他引:5  
观察了植物体内的天然黄酮芦丁和吲哚乙酸(IAA)对绿豆幼苗营养生长的影响并测定胚轴中的芦丁和IAA含量.光照条件下芦丁(60μg/mL以下)处理对绿豆幼苗生长有一定促进作用,表现为胚轴和主根伸长加快、侧根数目增多、鲜重或干重增加;而光照条件下更高浓度芦丁(80μg/mL以上)处理及黑暗条件下芦丁(20~100μg/mL)处理对绿豆幼苗生长有抑制作用.当培养基中的芦丁浓度为60~80 μg/mL时,光照下的幼苗比暗处理的幼苗在胚轴中积累更多的芦丁;而芦丁浓度为40μg/mL以下和接近100μg/mL时幼苗在光照下累积的芦丁较暗处理的幼苗更少.0.1μg/mL以上的IAA促进芦丁的累积而进一步抑制幼苗胚轴和主根的伸长.当培养基中含有40 μg/mL的芦丁和0.5μg/mL的IAA时,胚轴中累积的芦丁达到高峰.芦丁降低黄化幼苗内源性IAA在胚轴中的累积,并抑制幼苗对IAA的吸收.  相似文献   

4.
表油菜素内酯对绿豆上胚轴内源IAA及其氧化酶的影响   总被引:4,自引:0,他引:4  
用0.5ppm表油菜素内酯处理绿豆幼苗,显著促进上胚轴伸长生长,若切除真叶则可抑制表油菜素内酯诱导的效应。三碘苯甲酸(TIBA)也可抑制表油菜素内酯促进的伸长生长。外源IAA能部分恢复TIBA的抑制效应。经处理的上胚轴内源IAA含量明显高于对照。暗示表油菜素内酯可能通过对内源IAA的调节来促进绿豆上胚轴的伸长生长。 表油菜素内酯处理的绿豆上胚轴组织中,与生长素降解密切相关的IAA氧化酶以及过氧化物酶活性均明显低于对照。  相似文献   

5.
高等植物UV-B效应研究进展   总被引:9,自引:0,他引:9  
本文概述了植物UV-B效应近年来的研究进展,UV-B对植物生理过程的影响表现为抑制细胞伸长,降低光合作用,引起植物细胞内活性氧代谢的紊乱,膜脂过氧化作用增强。植物种间、种内都存在UV-B敏感性差异。UV-B对植物DNA的损伤主要是形成嘧啶二聚体。UV-B可诱导紫外吸收化合物的合成,积累,并对植物基因表达有重要调节作用。  相似文献   

6.
研究了UV-B辐射对广东省南亚热带森林木本植物九节、鸭脚木、猴耳环、半枫荷、山乌桕入绿化树种大叶合欢幼苗生长的影响。实验结果表明,UV-B辐射降低叶片光合色素的含量;显著降低幼苗的净光合速率、蒸腾速率和气孔导度;降低干物质的增长;抑制大叶合欢幼苗要根瘤的形成。  相似文献   

7.
表油菜素内酯处理油菜幼苗,可明显促进下胚轴伸长生长,增加子叶面积,同时降低蛋白质含量及子叶中可溶性糖含量,SDS-PAGE检测蛋白结果表明,epiBR处理后,下胚轴和子叶中的蛋白组分均发生明显的改变。  相似文献   

8.
光地拟南芥微管蛋白基因表达的负调节作用   总被引:1,自引:0,他引:1  
白光处理后拟南芥白化苗中的微管蛋白基因mRNA都有不同程度降低。白地中TUB1的mRNA量很高,连续用白光处理白化苗2 ̄6h,TUB1mRNA降低。分析拟南芥幼苗根、下胚轴中的RNA发现根中TUB1基因转录水平不受白光影响。具子叶的下胚轴中TUB1基因转录水平受白光抑制。白光对TUB1基因表达的负调节具有组织特异性。  相似文献   

9.
渗透胁迫对绿豆下胚轴延伸生长及H^+分泌的影响   总被引:1,自引:1,他引:0  
-0.9MPa甘露醇渗透胁迫处理,明显抑制绿豆幼苗下胚轴延伸生长和生长部位H^+分泌,而且随胁迫时间延长抑制程度增大。PMH^+-ATPase活性在渗透胁迫下先下降而后升高并超过对照水平。  相似文献   

10.
红光、远红光、钙及IAA对绿豆下胚轴切段伸长的影响   总被引:9,自引:2,他引:7  
红光明显抑制黄化绿豆下胚轴切段的伸长,远红光则有部分逆转红光的作用。黑暗条件下加钙对切段具有与红光处理相同的抑制伸长效果。IAA可完全逆转红光的作用。  相似文献   

11.
《Plant science》1986,46(1):63-68
Protoplasts were isolated from successive sections along the mung bean hypocotyl. High yields were obtained with mature tissues. The fatty acid composition of the protoplasts was similar to that found in the original cells which indicates that no major structural alteration of membranes occurs during protoplast isolation. In contrast, all the cells regenerated from the protoplasts exhibited a modified lipid composition and isoperoxidase profiles when compared to hypocotyl cells.  相似文献   

12.
The disulfated peptide growth factor phytosulfokine-α (PSK-α) is perceived by LRR receptor kinases. In this study, a role for PSK signaling through PSK receptor PSKR1 in Arabidopsis thaliana hypocotyl cell elongation is established. Hypocotyls of etiolated pskr1-2 and pskr1-3 seedlings, but not of pskr2-1 seedlings were shorter than wt due to reduced cell elongation. Treatment with PSK-α did not promote hypocotyl growth indicating that PSK levels were saturating. Tyrosylprotein sulfotransferase (TPST) is responsible for sulfation and hence activation of the PSK precursor. The tpst-1 mutant displayed shorter hypocotyls with shorter cells than wt. Treatment of tpst-1 seedlings with PSK-α partially restored elongation growth in a dose-dependent manner. Hypocotyl elongation was significantly enhanced in tpst-1 seedlings at nanomolar PSK-α concentrations. Cell expansion was studied in hypocotyl protoplasts. WT and pskr2-1 protoplasts expanded in the presence of PSK-α in a dose-dependent manner. By contrast, pskr1-2 and pskr1-3 protoplasts were unresponsive to PSK-α. Protoplast swelling in response to PSK-α was unaffected by ortho-vanadate, which inhibits the plasma membrane H(+)-ATPase. In maize (Zea mays L.), coleoptile protoplast expansion was similarly induced by PSK-α in a dose-dependent manner and was dependent on the presence of K(+) in the media. In conclusion, PSK-α signaling of hypocotyl elongation and protoplast expansion occurs through PSKR1 and likely involves K(+) uptake, but does not require extracellular acidification by the plasma membrane H(+)-ATPase.  相似文献   

13.
Microscopic observations made during preparation of protoplasts and vacuoles from red radish seedling hypocotyl (Raphanus sativus L.) show that anthocyanoplasts, the strongly pigmented bodies present in the pigmented cells of the hypodermis, begin as apparently membranous vesicles in the cytoplasm made visible by the deposition and accumulation of anthocyanins, but only rarely appear in the isolated vacuole. Isolation of protoplasts and vacuoles was also achieved from mung bean seedling hypocotyl (Vigna radiata L Wilczek), red cabbage leaf (Brassica oleracea L.) and Prunus x yedoensis Matsum callus. Anthocyanoplasts were usually in the vacuole, although sometimes in the cytoplasm, of the mung bean and cabbage, but were never seen in vacuoles of Prunus callus.  相似文献   

14.
Application of gibberellic acid to the apex of dwarf bean plants (cv. Alabaster) stimulated the elongation growth of epicotyl and hypocotyl but showed no significant effect on elongation growth in a normal cultivar (‘Blue Lake’). Gibberellin-treatment of dwarf plants was characterized by about twofold increase in the level of endogenous auxin. Maximum increase in IAA level was observed after 48 h of GA treatment. There was less increase in IAA content in normal bean plants. — Gibberellin treatment to excised epicotyl and hypocotyl sections of either dwarf or normal cultivar showed no effect on elongation growth. However, a considerable increase in the auxin level was observed in the sections of the dwarf cultivar. The maximum effect occurred with only 1 h incubation in basal medium containing gibberellin. — The indolo-α-pyrone spectro-fluoremetric method for IAA determination was used.  相似文献   

15.
Brassinolide, a growth-promoting steroidal lactone   总被引:5,自引:0,他引:5  
Brassinolide (BR), a naturally-occurring-steroidal lactone from rape ( Brassica napus L.) pollen, was compared with auxin for activity in a number of bioassay systems. Responses similar to IAA were elicited by BR in bioassays based upon bean hypocotyl hook opening, elongation of maize mesocotyl, pea epicotyl and azuki bean epicotyl sections, and fresh weight increase in Jerusalem artichoke (2,4-D used) and pea epicotyl sections. The azuki bean and dwarf pea epicotyl bioassays were much more responsive to BR than IAA (at 10 μ M ). Responses approximately two-fold greater in magnitude were elicited by IAA in the maize mesocotyl, bean hypocotyl hook and Jerusalem artichoke bioassays. Little or no response was elicited by BR (0.01 to μ M ) in the cress root or decapitated pea-lateral bud bioassays. A powerful synergism between BR and IAA was observed in the azuki bean, pea epicotyl and bean hypocotyl hook bioassays. Although, as previously reported, other steroidal substances are active in some of the bioassay systems tested, none compared with BR in magnitude and diversity of elicited responses.  相似文献   

16.
Concentrations of 24-epibrassinolide as low as 0.1 μ M consistently inhibited adventitious root formation and elongation in both hypocotyl and epicotyl cuttings from mung bean ( Phaseolus aureus L.). Similar, but less pronounced, inhibitory effects on root elongation were also observed with estrone sulphate and estradiol sulphate. With regards to root number, estrone sulphate enhanced this in both types of cutting, whereas estradiol sulphate was stimulatory in hypocotyl cuttings but inhibitory in epicotyl cuttings. Brassinolide caused a marked stimulation of epicotyl (but not hypocotyl) elongation and a swelling and splitting of the epicotyl in both types of cutting, whereas estrogens varied in their effect from inhibition of epicotyl growth to no effect. Root-applied brassinolide and estrogen sulphates brought about similar morphological abnormalities in shoots viz. epinasty and inrolling of primary leaves and delayed expansion of the first trifoliate leaf.  相似文献   

17.
Gotô N  Esashi Y 《Plant physiology》1976,57(4):547-552
The effect of red light on the aging progression of the bean (Phaseolus vulgaris L.) hypocotyl segment unit was examined in relation to dwarfism using Kentucky Wonder (tall) and Masterpiece (dwarf) varieties. In both plants, red light promoted the elongation of younger zones and inhibited that of mature zones. The zone exhibiting maximum elongation was shifted to the younger zones by red light irradiation regardless of the plant type, but its extent was greater in the dwarf than in the tall. Thus, red light hastens both the beginning of elongation in the younger portion and its termination in the mature portion of the hypocotyl, particularly of the dwarf plant. These red light responses in each zone of both the tall and dwarf hypocotyl units were reversed by subsequent exposure to far red light regardless of the duration and intensity of red light, thus indicating that the hastened aging progression of the hypocotyl by red light is mediated by phytochrome. However, there is no difference in the rate of decay of Pfr between the tall and dwarf hypocotyls.  相似文献   

18.
Hypocotyl sections with and without the cotyledons were cutfrom bean seedlings and incubated under white light of 6000lux. The cotyledons had an inhibitory effect as well as a promotiveeffect on hypocotyl growth. The former effect was more strikingin the dwarf variety, and the latter in the tall variety. Whenthe hypocotyl units were exposed to light for shorter times(6 hr or less) or incubated under weaker light (1600 and 50lux), the inhibitory effect of the cotyledons decreased greatly,and in the tall variety the presence of cotyledons producedno inhibition, but a promotion of hypocotyl growth. GA treatmentenhanced hypocotyl growth and counteracted the growth inhibitioncaused by the cotyledons. On the whole, the GA effect was moremarked in the tall variety than in the dwarf. The elongation of bean hypocotyls may be controlled by a balancebetween the inhibitory and promotive effects of cotyledons,and the predominance of the former over the latter may be oneof the causes for expressing dwarfing. (Received November 13, 1976; )  相似文献   

19.
Effects of ethylene on the elongation of bean (Phaseolus vulgaris) embryonic axes and hypocotyls, and of cocklebur (Xanthium pennsylvanicum) hypocotyls were studied. In the bean axes, exogenous ethylene was promotive in stimulating longitudinal growth during the early germination period, but thereafter it turned inhibitive. This transition of the ethylene action is likely involved in the appearance of newly differentiated tissues in the hypocotyl, which are negatively sensitive to the gas. The ethylene stimulated elongation of the axes was hardly affected by light or by the presence of the cotyledons. In the bean hypocotyl segment unit, elongation was stimulated by ethylene in its limited zone, when the concentration of ethylene and the exposure times to ethylene were adequate (0.3 to 30 μl/l, 6 to 8 h): Elongation in the much younger region near to the elbow was inhibited by ethylene treatment, whereas the treatment of the upper region of the shank with ethylene finally resulted in significantly increased growth as compared to the untreated controls. In the continuing presence of ethylene over 3 days, the elongation of every region was retarded markedly and radial growth was induced in most regions of the shank from just below the elbow. These ethylene responses occurred independently of red light irradiation, but the ethylene promotion of elongation was lost by shortening the segment height, by removing the hook portion from the segment unit, or with its natural disappearance as a result of ageing. Fundamentally, similar effects of ethylene was observed in cocklebur hypocotyls.  相似文献   

20.
The new growth promoter, N(2-acyl-l,3-indane dione) triethylammonium iodide (L-TEAI) enhanced the elongation of the seedlings of cluster bean (Cyamopsis tetragonoloba (L.) Taub, belonging to familyPapilionaceae). When the two growth regulators, L-TEAI and cycocel were applied together, the cycocel induced inhibition of radicle elongation was reversed, but it failed to reverse the inhibition of hypocotyl elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号