共查询到20条相似文献,搜索用时 0 毫秒
1.
T A Zapara O G Simonova A A Zharkikh A S Ratushniak 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》1999,85(1):128-138
Infringement of the Lymnaea stagnalis cytoskeleton condition affected preservation and repeated development of plastic responses. Stabilising of the microtubules led to a dependence of the development and preservation dynamics of the plastic responses. Stabilising of the microfilaments transformed short-term plastic responses into long-term ones. The findings suggest a key role of reorganisation of the cytoskeleton in neuronal plasticity. 相似文献
2.
3.
4.
Translocation of the neuronal cytoskeleton and axonal locomotion 总被引:13,自引:0,他引:13
R J Lasek 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1982,299(1095):313-327
5.
Actin and tubulin are the major components of the cytoskeleton that pervades the cytoplasm of all eukaryotic cells. These proteins were traditionally thought not to be present in prokaryotes, but structural and functional homologues of tubulin (FtsZ) and actin (MreB) are now known to be present virtually throughout the eubacteria and in some archae. FtsZ protein is a key player in cell division of bacteria and some eukaryotic organelles. MreB proteins are involved in the regulation of cell shape and the segregation of some bacterial plasmids, and might have a range of other functions. Recent data demonstrate that the bacterial proteins are, like their eukaryotic counterparts, highly dynamic. Here, we review the general properties and functions of actin and tubulin homologues in bacteria, their dynamic behaviour and the implications for understanding cell division and morphogenesis in bacteria. 相似文献
6.
The formation of an axon and dendrites, neuronal polarization, is a prerequisite for neurons to integrate and propagate information within the brain. During the past years progress has been made toward understanding the initial stage of neuronal polarization, axon formation. First, the physiological role of some candidate regulators of neuronal polarity has been affirmed, including Sad kinases, the Rho-GTPase Cdc42, and the actin regulators Ena/VASP proteins. Second, recent studies have revealed microtubule stabilization as a mechanism complementary to actin dynamics underlying neuronal polarization. Moreover, stable microtubules in the axon may form a landmark to confer identity to the axon. This review highlights the recent advances in understanding the intracellular mechanisms underlying neuronal polarization and discusses them in the context of putative cytoskeletal effectors. 相似文献
7.
Camera P da Silva JS Griffiths G Giuffrida MG Ferrara L Schubert V Imarisio S Silengo L Dotti CG Di Cunto F 《Nature cell biology》2003,5(12):1071-1078
The actin cytoskeleton is best known for its role during cellular morphogenesis. However, other evidence suggests that actin is also crucial for the organization and dynamics of membrane organelles such as endosomes and the Golgi complex. As in morphogenesis, the Rho family of small GTPases are key mediators of organelle actin-driven events, although it is unclear how these ubiquitously distributed proteins are activated to regulate actin dynamics in an organelle-specific manner. Here we show that the brain-specific Rho-binding protein Citron-N is enriched at, and associates with, the Golgi apparatus of hippocampal neurons in culture. Suppression of the whole protein or expression of a mutant form lacking the Rho-binding activity results in dispersion of the Golgi apparatus. In contrast, high intracellular levels induce localized accumulation of RhoA and filamentous actin, protecting the Golgi from the rupture normally produced by actin depolymerization. Biochemical and functional analyses indicate that Citron-N controls actin locally by assembling together the Rho effector ROCK-II and the actin-binding, neuron-specific, protein Profilin-IIa (PIIa). Together with recent data on endosomal dynamics, our results highlight the importance of organelle-specific Rho modulators for actin-dependent organelle organization and dynamics. 相似文献
8.
《The Journal of cell biology》1984,99(5):1803-1813
A cytoskeleton-associated glycoprotein of 130-kilodalton molecular mass (GP 130) was purified from a nonionic detergent-insoluble fraction of 10-16-d-old chicken embryo brains. GP 130 is tightly associated with other proteins in actin-containing complexes (Moss, D.J., 1983, Eur. J. Biochem., 135:291-297); thus, pure protein preparations were obtained only after the partial dissociation of the complexes with the zwitterionic detergent, dimethyl dodecyl glycine (EMPIGEN BB), followed by ion-exchange chromatography and electrophoresis on preparative SDS polyacrylamide gels. Specific monoclonal and polyclonal antibodies were raised to GP 130 and used to examine its distribution in the developing nervous system. Experiments with these antibodies revealed that GP 130 is confined to nervous tissue and is restricted to the surface of neurons in cultures derived from both the central and peripheral nervous systems. This novel glycoprotein is immunologically unrelated to the neuronal cell adhesion molecule (N-CAM), or to vinculin, a protein of similar molecular mass which has been suggested to link actin filaments to the plasma membrane. In the developing chicken embryo brain, GP 130 is first detectable around day 8 after fertilization and increases to approximately 50% of its adult level by embryonal day 13. In contrast, no increase is observed over a similar developmental period in sciatic nerve. In the adult chicken, GP 130 is most abundant in brain and has a particularly high content in areas rich in dendrites and synapses. 相似文献
9.
The microtubular element of the plant cytoskeleton undergoes dramatic architectural changes in the course of the cell cycle, specifically at the entry into and exit from mitosis. These changes underlie the acquisition of specialized properties and functions involved, for example, in the equal segregation of chromosomes and the correct positioning and formation of the new cell wall. Here we review some of the molecular mechanisms by which the dynamics and the organization of microtubules are regulated and suggest how these mechanisms may be under the control of cell cycle events. 相似文献
10.
Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton 总被引:21,自引:29,他引:21
下载免费PDF全文

《The Journal of cell biology》1984,98(4):1523-1536
Neurofilaments in the axons of mammalian spinal cord neurons are extensively cross-linked; consequently, the filaments and their cross- bridges compose a three-dimensional lattice. We have used antibody decoration in situ combined with tissue preparation by the quick- freeze, deep-etch technique to locate three neurofilament polypeptides (195, 145, and 73 Kd) within this lattice. When antibodies against each polypeptide were incubated with detergent-extracted, formaldehyde-fixed samples of rabbit spinal cord, each antibody assumed a characteristic distribution: anti-73-Kd decorated the neurofilament core uniformly, but not the cross-bridges; anti-145-Kd also decorated the core, but less uniformly; sometimes the anti-145-Kd antibodies were located over the bases of cross-bridges. In contrast, anti-195-Kd primarily decorated the cross-bridges between the neurofilaments. These observations show that the 73-Kd polypeptide is a component of the central core of neurofilaments, and that the 195-Kd polypeptide is a component of the inter-neurofilamentous cross-bridges. It is consistent with this conclusion that we found few cross-bridges between neurofilaments in the optic nerves of neonatal rabbits during a developmental period when the ratio of 195 to 73 or 145-Kd polypeptides is much lower than in adults. The ratio of 195-Kd polypeptide to the other two neurofilament polypeptides also appeared much lower in the cell bodies and dendrites than in axons of adult spinal cord neurons, when the dispositions of the three polypeptides were studied by immunofluorescence experiments. The cell bodies apparently contain neurofilaments composed primarily of 145- and 73-Kd polypeptides, because we observed antibody decoration of individual neurofilaments in the cell bodies with anti-73- and -145-Kd, but not with anti-195-Kd. We conclude that the 195-Kd polypeptide participates in a cross-linking function, and that this function is, at least in certain neurons, most prevalent in the mature axon. 相似文献
11.
The cytoskeleton and cell volume regulation 总被引:8,自引:0,他引:8
Pedersen SF Hoffmann EK Mills JW 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2001,130(3):385-399
Although the precise mechanisms have yet to be elucidated, early events in osmotic signal transduction may involve the clustering of cell surface receptors, initiating downstream signaling events such as assembly of focal adhesion complexes, and activation of, e.g. Rho family GTPases, phospholipases, lipid kinases, and tyrosine- and serine/threonine protein kinases. In the present paper, we briefly review recent evidence regarding the possible relation between such signaling events, the F-actin cytoskeleton, and volume-regulatory membrane transporters, focusing primarily on our own work in Ehrlich ascites tumer cells (EATC). In EATC, cell shrinkage is associated with an increase, and cell swelling with a decrease in F-actin content, respectively. The role of the F-actin cytoskeleton in cell volume regulation in various cell types has largely been investigated using cytochalasins to disrupt F-actin and highly varying effects have been reported. Findings in EATC show that the effect of cytochalasin treatment cannot always be assumed to be F-actin depolymerization, and that, moreover, there is no well-defined correlation between effects of cytochalasins on F-actin content and their effects on F-actin organization and cell morphology. At a concentration verified to depolymerize F-actin, cytochalasin B (CB), but not cytochalasin D (CD), inhibited the regulatory volume decrease (RVD) and regulatory volume increase (RVI) processes in EATC. This suggests that the effect of CB is related to an effect other than F-actin depolymerization, possibly its F-actin severing activity. 相似文献
12.
Actin and microtubules are major cytoskeletal elements of most cells including neurons. In order for a cell to move and change shape, its cytoskeleton must undergo rearrangements that involve breaking down and reforming filaments. Many recent reviews have focused on the signaling pathways emanating from receptors that ultimately affect axon growth and growth cone steering. This particular review will address changes in the actin cytoskeleton modulated by the family of actin dynamizing proteins known as actin depolymerizing factor (ADF)/cofilin or AC proteins. Though much is known about inactivation of AC proteins through phosphorylation at ser3 by LIM or TES kinases, new mechanisms of regulation of AC have recently emerged. A novel phosphatase, slingshot (SSH), and the 14-3-3 family of regulatory proteins have also been found to affect AC activity. The potential role of AC proteins in modulating the actin organizational changes that accompany neurite initiation, axonogenesis, growth cone guidance, and dendritic spine formation will be discussed. 相似文献
13.
J P Brion 《Biochimica et biophysica acta》1992,1160(1):134-142
The two characteristic neuropathological lesions of Alzheimer's disease are the neurofibrillary tangles and the senile plaques. Neurofibrillary tangles are made of abnormal filaments (PHF) accumulating in neurons and mainly composed of a modified form of the microtubule-associated protein tau (PHF-tau). Senile plaques are composed of a cluster of dystrophic neurites surrounding an extracellular deposit of amyloid fibers made of a 42 amino-acid peptide (beta-amyloid peptide). The abnormal filaments contain the complete sequences of the different tau isoforms. The PHF-tau proteins can be distinguished from the normal tau proteins by the presence of several phosphorylated sites. One of these sites is phosphorylated by a calcium-calmodulin-dependent kinase. The relationship between PHF-tau and the cytoskeletal pathology in Alzheimer's disease is further discussed. 相似文献
14.
Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions 总被引:2,自引:0,他引:2
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms. 相似文献
15.
Sperry AO 《Biology of the cell / under the auspices of the European Cell Biology Organization》2012,104(5):297-305
Mammalian spermatogenesis is characterised by dramatic cellular change to transform the non-polar spermatogonium into a highly polarised and functional spermatozoon. The acquisition of cell polarity is a requisite step for formation of viable sperm. The polarity of the spermatozoon is clearly demonstrated by the acrosome at the apical pole of the cell and the flagellum at the opposite end. Spermatogenesis consists of three basic phases: mitosis, meiosis and spermiogenesis. The final phase represents the period of greatest cellular change where cell-type specific organelles such as the acrosome and the flagellum form, the nucleus migrates to the plasma membrane and elongates, chromatin condenses and residual cytoplasm is removed. An important feature of spermatogenesis is the change in the cytoskeleton that occurs throughout this pathway. In this review, the author will provide an overview of these transformations and provide insight into possible modes of regulation of these rearrangements during spermatogenesis. Although primary focus will be given to the microtubule cytoskeleton, the importance of actin filaments to the cellular transformation of the male germ cell will also be discussed. 相似文献
16.
Background
Gelsolin, an actin capping protein of osteoclast podosomes, has a unique function in regulating assembly and disassembly of the podosome actin filament. Previously, we have reported that osteopontin (OPN) binding to integrin αvβ3 increased the levels of gelsolin-associated polyphosphoinositides, podosome assembly/disassembly, and actin filament formation. The present study was undertaken to identify the possible role of polyphosphoinositides and phosphoinositides binding domains (PBDs) of gelsolin in the osteoclast cytoskeletal structural organization and osteoclast function. 相似文献17.
18.
Evidence continues to accrue in support of the notion that normal adult human tau is converted into the protein subunits of Alzheimer's disease paired helical filaments as a result of the abnormal phosphorylation of tau at aberrant sites. Although the biological consequences of the generation of these abnormal tau derivatives in neurons remain uncertain, it is plausible that this process could destabilize microtubules and have a deleterious effect on the function and survival of neurons. Recent studies that probe the mechanisms whereby normal tau, a component of the neuronal cytoskeleton, undergoes profound alterations to become paired helical filaments in the Alzheimer's diseased brain are discussed. 相似文献
19.
The slow step in steroid synthesis involves the transport of cholesterol from lipid droplets in the cytoplasm to the first enzyme in the pathway—the cytochrome P450 that converts cholesterol to pregnenolone (P450scc) which is located in the inner mitochondrial membrane. ACTH stimulates this intracellular transport of cholesterol in adrenal cells (Y-1 mouse adrenal tumour cells and cultured bovine fasciculata cells) and this effect of the trophic hormone is inhibited by cytochalasins, by anti-actin antibodies and DNase I suggesting that the response to ACTH requires a pool of monomeric (G-) actin that can be polymerized to F-actin. Recent studies have shown that lipid droplets and mitochondria of adrenal cells are both attached to intermediate filaments. Moreover ACTH reorganizes the cytoskeleton and changes the shape of the cell. These observations suggest a mechanism for transport of cholesterol that involves reorganization and contraction of actin microfilaments which may, in turn, cause movement of droplets and mitochondria together through their common attachment to intermediate filaments. 相似文献
20.
血管扩张刺激磷蛋白在细胞骨架调节中的作用 总被引:2,自引:0,他引:2
细胞骨架动力学的调节在细胞粘附、细胞变形、细胞移动等生理过程中是必需的。血管扩张刺激磷蛋白(vasodilator-stimulated phosphoprotein,VASP)是一种肌动蛋白结合蛋白。该蛋白包含以下结构域:EVH1(Ena/VASP homolog1)区、EVH2(Ena/VASP homolog2)区及PRR(proline—rich regions)区。近年来,研究发现VASP在与细胞骨架调节有关的各种细胞行为中起着重要作用,如神经细胞轴索的延伸、T细胞的移动、成纤维细胞的迁移等。VASP的磷酸化受PKG(cGMP-dependent protein kinase)和PKA(cAMP—dependent protein kinase)的调控。在粘附斑的形成与脱落过程中,该磷酸化起着一个“开关”的作用。本文将就近20年来VASP的研究成果,特别是近年来的进展情况做一综述。 相似文献