首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Ceruso  A Grottesi  A Di Nola 《Proteins》1999,36(4):436-446
The effects of core-packing on the structure, function and mechanics of the RNA-binding 4-helix-bundle Rop have been studied by molecular dynamics simulations. The structural, dynamical and geometrical properties of the Rop homodimer, (formed by the antiparallel juxtaposition of two helix-turn-helix motifs), have been compared with those of three protein variants described by Munson et al. (Protein Sci, 5:1584-1593, 1996), where the core of the native protein has been systematically repacked using a two-amino acid alphabet: Ala(2)Leu(2)-8, Ala(2)Leu(2)-8-rev, and Leu(2)Ala(2)-8. The results showed that it was possible to readily distinguish the inactive protein Leu(2)Ala(2)-8 from the other functionally active systems based on tertiary and quaternary structure criteria. Structural properties such as native secondary structure content did not correlate with biological activity. Biological activity was related in part to the relative arrangement of the residues within the binding site. But, more global aspects, related to the overall topology of the helical bundle, accounted for the small functional differences between Ala(2)Leu(2)-8 and Ala(2)Leu(2)-8-rev. Mechanically, the 4-helix-bundle absorbed core mutations by altering the local structure at the sequence termini and in the turns that join the two helices of each monomer, and by changing the overall orientation and separation of the extremely rigid helices. Proteins 1999;36:436-446.  相似文献   

2.
BACKGROUND: A large energy gap between the native state and the non-native folded states is required for folding into a unique three-dimensional structure. The features that define this energy gap are not well understood, but can be addressed using de novo protein design. Previously, alpha(2)D, a dimeric four-helix bundle, was designed and shown to adopt a native-like conformation. The high-resolution solution structure revealed that this protein adopted a bisecting U motif. Glu7, a solvent-exposed residue that adopts many conformations in solution, might be involved in defining the unique three-dimensional structure of alpha(2)D. RESULTS: A variety of hydrophobic and polar residues were substituted for Glu7 and the dynamic and thermodynamic properties of the resulting proteins were characterized by analytical ultracentrifugation, circular dichroism spectroscopy, and nuclear magnetic resonance spectroscopy. The majority of substitutions at this solvent-exposed position had little affect on the ability to fold into a dimeric four-helix bundle. The ability to adopt a unique conformation, however, was profoundly modulated by the residue at this position despite the similar free energies of folding of each variant. CONCLUSIONS: Although Glu7 is not involved directly in stabilizing the native state of alpha(2)D, it is involved indirectly in specifying the observed fold by modulating the energy gap between the native state and the non-native folded states. These results provide experimental support for hypothetical models arising from lattice simulations of protein folding, and underscore the importance of polar interfacial residues in defining the native conformations of proteins.  相似文献   

3.
L Carlacci  K C Chou  G M Maggiora 《Biochemistry》1991,30(18):4389-4398
A combination of a heuristic approach and energy minimization was used to predict the three-dimensional structure of bovine somatotropin (bSt), also known as bovine growth hormone, a protein of 191 amino acids. The starting points for energy minimizations were generated from the following two types of inputs: (a) the amino acid sequence and (b) the heuristic inputs, which were derived according to physical, chemical, and biological principles by piecing together all useful information available. The predicted 3-D structure of the bSt molecule has all the features observed in four-helix bundle proteins. The four alpha-helices in bSt are intimately packed to form an assembly with an approximately square cross section. All the adjacent alpha-helices are antiparallel, with a somewhat tilted angle between each of the adjacent pairs so that the assembly of the four helices looks like a left-handed twisted bundle. There are two disulfide bonds in the bSt structure: one "hooking" the middle of a long loop with helix 4 so as to pull the long loop onto the surface of the helix bundle and the other "hooking" the C-terminal segment with the same helix so as to force the C-terminal segment to bend toward the helix bundle. As a consequence, a considerable part of the surface of the four-helix bundle is closely packed or intimately embraced by the loop segments. The predicted bSt structure has a hydrophobic core and a hydrophilic exterior surface. The energetic analysis of the predicted bSt structure indicates that the interaction between helices and loops plays a dominant role in stabilizing the four-helix bundle structure from the viewpoint of both electrostatic and nonbonded interactions. A technique called FOLD was meanwhile developed, by which one can fold a polypeptide chain into any shape as desired. This tool proved to be very useful during the heuristic model-building process.  相似文献   

4.
A set of combinatorial amphipathic helical peptides referred to as the KIA series has been screened to identify native-like helical bundles. The series contains the following consensus sequence: AKAxAAxxKAxAAxxKAGGY, where "x" positions are occupied by either Ala or Ile. The peptide sequences in the series comprise all possible combinations of four Ile residues occupying the six x positions. In each case, Ala occupied the two x positions not occupied by Ile. There are a total of 15 peptides in the KIA series; all of the peptides differ in the number of ridges and grooves formed by the Ile side chains, and two of the KIA peptides possess a canonical knobs-into-holes heptad repeat. The structure and stability of these 15 peptides and their pairwise mixtures were evaluated. One peptide in the series formed a stable four-helix bundle that folded with cooperativity similar to native proteins. Ten peptides assembled into molten globular helical assemblies, two peptides were unstructured, and two peptides assembled into helical filaments that were several micrometers long. One of the helical filament forming peptides could be diverted from forming filaments by the addition of another KIA peptide, and resulted in the formation of a heteromeric six-helix bundle. This study demonstrates that combinatorial peptides composed of only three types of amino acids can form a diverse array of structures, some of which are native-like.  相似文献   

5.
We converted the small homodimeric four-helix bundle repressor of primer protein (Rop) into a monomeric four-helix bundle by introduction of connecting loops. Both left- and right-handed four-helix bundles were produced. The left-handed bundles were more stable and were used to introduce biologically interesting peptides in one of the loops.  相似文献   

6.
Genetic and structural analysis of the ColE1 Rop (Rom) protein.   总被引:2,自引:0,他引:2       下载免费PDF全文
Repressor of primer (Rop) is a small dimeric protein that participates in the mechanism that controls the copy number of plasmid of the ColE1 family by increasing the affinity between two complementary RNAs. The Rop dimer is a bundle of four tightly packed alpha-helices that are held together by hydrophobic interactions. We have systematically altered, by site directed mutagenesis, most of the solvent exposed amino acids of the Rop bundle and we have identified the alterations that cause a decrease of the activity of the regulatory molecule. We conclude that Rop folding is rather insensitive to amino acid substitutions and to other mutations as drastic as deletions and insertions. Looking along the 2-fold symmetry axis the amino acid side chains whose alterations affect the function of Rop are all located on one side of the molecule. Furthermore they are clustered at the extremities of the alpha-helix bundle, the only exception being the aromatic ring of Phe-14.  相似文献   

7.
The structural heterogeneity and thermal denaturation of a dansyl-labeled four-helix bundle homodimeric peptide was studied with steady-state and time-resolved fluorescence spectroscopy and with circular dichroism (CD). At room temperature the fluorescence decay of the polarity-sensitive dansyl, located in the hydrophobic core region, can be described by a broad distribution of fluorescence lifetimes, reflecting the heterogeneous microenvironment. However, the lifetime distribution is nearly bimodal, which we ascribe to the presence of two major conformational subgroups. Since the fluorescence lifetime reflects the water content of the four-helix bundle conformations, we can use the lifetime analysis to monitor the change in hydration state of the hydrophobic core of the four-helix bundle. Increasing the temperature from 9°C to 23°C leads to an increased population of molten-globule-like conformations with a less ordered helical backbone structure. The fluorescence emission maximum remains constant in this temperature interval, and the hydrophobic core is not strongly affected. Above 30°C the structural dynamics involve transient openings of the four-helix bundle structure, as evidenced by the emergence of a water-quenched component and less negative CD. Above 60°C the homodimer starts to dissociate, as shown by the increasing loss of CD and narrow, short-lived fluorescence lifetime distributions.  相似文献   

8.
To test whether it is practical to use phage display coupled with proteolysis for protein design, we used this approach to convert a partially unfolded four-helix bundle protein, apocytochrome b(562), to a stably folded four-helix bundle protein. Four residues expected to form a hydrophobic core were mutated. One residue was changed to Trp to provide a fluorescence probe for studying the protein's physical properties and to partially fill the void left by the heme. The other three positions were randomly mutated. In addition, another residue in the region to be redesigned was substituted with Arg to provide a specific cutting site for protease Arg-c. This library of mutants was displayed on the surface of phage and challenged with protease Arg-c to select stably folded proteins. The consensus sequence that emerged from the selection included hydrophobic residues at only one of the three positions and non-hydrophobic residues at the other two. Nevertheless, the selected proteins were thermodynamically very stable. The structure of a selected protein was characterized using multi-dimensional NMR. All four helices were formed in the structure. Further, site-directed mutagenesis was used to change one of the two non-hydrophobic residues to a hydrophobic residue, which increased the stability of the protein, indicating that the selection result was not based solely on the protein's global stability and that local structural characteristics may also govern the selection. This conclusion is supported by the crystal structure of another mutant that has two hydrophobic residues substituted for the two non-hydrophobic residues. These results suggest that the hydrophobic interactions in the core are not sufficient to dictate the selection and that the location of the cutting site of the protease also influences the selection of structures.  相似文献   

9.
The GrpE heat shock protein from Escherichia coli has a homodimeric structure. The dimer interface encompasses two long alpha-helices at the NH(2)-terminal end from each monomer (forming a "tail"), which lead into a small four-helix bundle from which each monomer contributes two short sequential alpha-helices in an antiparallel topological arrangement. We have created a number of different deletion mutants of GrpE that have portions of the dimer interface to investigate requirements for dimerization and to study four-helix bundle formation. Using chemical crosslinking and analytical ultracentrifugation techniques to probe for multimeric states, we find that a mutant containing only the long alpha-helical tail portion (GrpE1-88) is unable to form a dimer, most likely due to a decrease in alpha-helical content as determined by circular dichroism spectroscopy, thus one reason for a dimeric structure for the GrpE protein is to support the tail region. Mutants containing both of the short alpha-helices (GrpE1-138 and GrpE88-197) are able to form a dimer and presumably the four-helix bundle at the dimer interface. These two mutants have equilibrium constants for the monomer-dimer equilibrium that are very similar to the full-length protein suggesting that the tail region does not contribute significantly to the stability of the dimer. Interestingly, one mutant that contains just one of the short alpha-helices (GrpE1-112) exists as a tetrameric species, which presumably is forming a four-helix bundle structure. A proposed model is discussed for this mutant and its relevance for factors influencing four-helix bundle formation.  相似文献   

10.
HIV entry is mediated by the envelope glycoproteins gp120 and gp41. The gp41 subunit contains several functional domains: the N-terminal heptad repeat (NHR) domains fold a triple stranded coiled-coil forming a meta-stable prefusion intermediate. C-terminal heptad repeat (CHR) subsequently folds onto the hydrophobic grooves of the NHR coiled-coil to form a stable 6-helix bundle, which juxtaposes the viral and cellular membranes for fusion. The C34 which has 34 amino acid residues is known as the core structure in CHR. A highly anti-HIV peptide inhibitor derived from C34 was designed. An artificial salt bridge was added in the 6-helical bundle by substitution of lysine for Ile646. With a cholesterol modification at C-terminal, the inhibitor containing I646K mutation represented higher anti-viral activity than C34–cholesterol combination without mutation.  相似文献   

11.
The repressor of primer (Rop) protein has become a steady source of surprises concerning the relationship between the sequences and the structures of several of its mutants and variants. Here we add another piece to the puzzle of Rop by showing that an engineered deletion mutant of the protein (corresponding to a deletion of residues 30-34 of the wild-type protein and designed to restore the heptad periodicity at the turn region) results in a complete reorganization of the bundle which is converted from a homodimer to a homotetramer. In contrast (and as previously shown), a two-residue insertion, which also restores the heptad periodicity, is essentially identical with wild-type Rop. The new deletion mutant structure is a canonical, left-handed, all-antiparallel bundle with a completely different hydrophobic core and distinct surface properties. The structure agrees and qualitatively explains the results from functional, thermodynamic, and kinetic studies which indicated that this deletion mutant is a biologically inactive hyperstable homotetramer. Additional insight into the stability and dynamics of the mutant structure has been obtained from extensive molecular dynamics simulations in explicit water and with full treatment of electrostatics.  相似文献   

12.
The crystal structure of the human hepatitis B virus capsid.   总被引:6,自引:0,他引:6  
Hepatitis B is a small enveloped DNA virus that poses a major hazard to human health. The crystal structure of the T = 4 capsid has been solved at 3.3 A resolution, revealing a largely helical protein fold that is unusual for icosahedral viruses. The monomer fold is stabilized by a hydrophobic core that is highly conserved among human viral variants. Association of two amphipathic alpha-helical hairpins results in formation of a dimer with a four-helix bundle as the major central feature. The capsid is assembled from dimers via interactions involving a highly conserved region near the C terminus of the truncated protein used for crystallization. The major immunodominant region lies at the tips of the alpha-helical hairpins that form spikes on the capsid surface.  相似文献   

13.
Compartmentalization of signal transduction enzymes into signaling complexes is an important mechanism to ensure the specificity of intracellular events. Formation of these complexes is mediated by specialized protein motifs that participate in protein-protein interactions. The adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) is localized through interaction of the regulatory (R) subunit dimer with A-kinase-anchoring proteins (AKAPs). We now report the solution structure of the type II PKA R-subunit fragment RIIalpha(1-44), which encompasses both the AKAP-binding and dimerization interfaces. This structure incorporates an X-type four-helix bundle dimerization motif with an extended hydrophobic face that is necessary for high-affinity AKAP binding. NMR data on the complex between RIIalpha(1-44) and an AKAP fragment reveals extensive contacts between the two proteins. Interestingly, this same dimerization motif is present in other signaling molecules, the S100 family. Therefore, the X-type four-helix bundle may represent a conserved fold for protein-protein interactions in signal transduction.  相似文献   

14.
The packing of four alpha-helices, which each consist of 12 Ala residues and are sequentially connected to each other by a segment of 10 Ala residues, has been investigated by means of energy minimizations. For the lowest energy structure thus obtained, the following features have been found: (i) the four alpha-helices are intimately packed to form an assembly with an approximately square section; (ii) the distances of closest approach between two adjacent interhelix axes are 7.7 +/- 0.2 A and those between two diagonal interhelix axes are 11.2 +/- 0.2 A; (iii) the adjacent interhelix angles are -163 +/- 2 degrees; and (iv) the diagonal interhelix angles are 24 +/- 4 degrees. These results indicate that the polypeptide chain, driven by energetics (nonbonded and electrostatic interactions), is folded into a typical left-handed twisted four-helix bundle with an approximately 4-fold symmetric array, as observed in most four alpha-helix proteins. Furthermore, it has been found that the interaction between the loops formed by the connecting segments and the other part of molecule plays a significant role in stabilizing such a bundle structure. The technology developed here and the relevant knowledge obtained through this study are very useful for the study of modeling four-helix bundle proteins.  相似文献   

15.
Takei J  Pei W  Vu D  Bai Y 《Biochemistry》2002,41(41):12308-12312
The native-state hydrogen exchange of a redesigned apocytochrome b(562) suggests that at least two partially unfolded forms (PUFs) exist for this four-helix bundle protein under native conditions. The more stable PUF has the N-terminal helix unfolded. To verify the conclusion further and obtain more detailed structural information about this PUF, five hydrophobic core residues in the N-terminal helix were mutated to Gly and Asp to destabilize the native state selectively and populate the PUF for structural studies. The secondary structure and the backbone dynamics of this mutant were characterized using multidimensional NMR. Consistent with the prediction, the N-terminal region of the mutant was found to be unfolded while other parts of the proteins remained folded. These results suggest that native-state hydrogen exchange-directed protein engineering can be a useful approach to populating partially unfolded forms for detailed structural studies.  相似文献   

16.
The de novo design and biophysical characterization of two 60-residue peptides that dimerize to fold as parallel coiled-coils with different hydrophobic core clustering is described. Our goal was to investigate whether designing coiled-coils with identical hydrophobicity but with different hydrophobic clustering of non-polar core residues (each contained 6 Leu, 3 Ile, and 7 Ala residues in the hydrophobic core) would affect helical content and protein stability. The disulfide-bridged P3 and P2 differed dramatically in alpha-helical structure in benign conditions. P3 with three hydrophobic clusters was 98% alpha-helical, whereas P2 was only 65% alpha-helical. The stability profiles of these two analogs were compared, and the enthalpy and heat capacity changes upon denaturation were determined by measuring the temperature dependence by circular dichroism spectroscopy and confirmed by differential scanning calorimetry. The results showed that P3 assembled into a stable alpha-helical two-stranded coiled-coil and exhibited a native protein-like cooperative two-state transition in thermal melting, chemical denaturation, and calorimetry experiments. Although both peptides have identical inherent hydrophobicity (the hydrophobic burial of identical non-polar residues in equivalent heptad coiled-coil positions), we found that the context dependence of an additional hydrophobic cluster dramatically increased stability of P3 (Delta Tm approximately equal to 18 degrees C and Delta[urea](1/2) approximately equal to 1.5 M) as compared with P2. These results suggested that hydrophobic clustering significantly stabilized the coiled-coil structure and may explain how long fibrous proteins like tropomyosin maintain chain integrity while accommodating polar or charged residues in regions of the protein hydrophobic core.  相似文献   

17.
The interaction between the cytoskeletal proteins talin and vinculin plays a key role in integrin-mediated cell adhesion and migration. We have determined the crystal structures of two domains from the talin rod spanning residues 482–789. Talin 482–655, which contains a vinculin-binding site (VBS), folds into a five-helix bundle whereas talin 656–789 is a four-helix bundle. We show that the VBS is composed of a hydrophobic surface spanning five turns of helix 4. All the key side chains from the VBS are buried and contribute to the hydrophobic core of the talin 482–655 fold. We demonstrate that the talin 482–655 five-helix bundle represents an inactive conformation, and mutations that disrupt the hydrophobic core or deletion of helix 5 are required to induce an active conformation in which the VBS is exposed. We also report the crystal structure of the N-terminal vinculin head domain in complex with an activated form of talin. Activation of the VBS in talin and the recruitment of vinculin may support the maturation of small integrin/talin complexes into more stable adhesions.  相似文献   

18.
Maquettes are de novo designed mimicries of nature used to test the construction and engineering criteria of oxidoreductases. One type of scaffold used in maquette construction is a four-alpha-helical bundle. The sequence of the four-alpha-helix bundle maquettes follows a heptad repeat pattern typical of left-handed coiled-coils. Initial designs were molten globular due partly to the minimalist approach taken by the designers. Subsequent iterative redesign generated several structured scaffolds with similar heme binding properties. Variant [I(6)F(13)](2), a structured scaffold, was partially resolved with NMR spectroscopy and found to have a set of mobile inter-helical packing interfaces. Here, the X-ray structure of a similar peptide ([I(6)F(13)M(31)](2) i.e. ([CGGG EIWKL HEEFLKK FEELLKL HEERLKKM](2))(2) which we call L31M), has been solved using MAD phasing and refined to 2.8A resolution. The structure shows that the maquette scaffold is an anti-parallel four-helix bundle with "up-up-down-down" topology. No pre-formed heme-binding pocket exists in the protein scaffold. We report unexpected inter-helical crossing angles, residue positions and translations between the helices. The crossing angles between the parallel helices are -5 degrees rather than the expected +20 degrees for typical left-handed coiled-coils. Deviation of the scaffold from the design is likely due to the distribution and size of hydrophobic residues. The structure of L31M points out that four identical helices may interact differently in a bundle and heptad repeats with an alternating [HPPHHPP]/[HPPHHPH] (H: hydrophobic, P: polar) pattern are not a sufficient design criterion to generate left-hand coiled-coils.  相似文献   

19.
Earlier work demonstrated that a water-soluble four-helix bundle protein designed with a cavity in its nonpolar core is capable of binding the volatile anesthetic halothane with near-physiological affinity (0.7 mM Kd). To create a more relevant, model membrane protein receptor for studying the physicochemical specificity of anesthetic binding, we have synthesized a new protein that builds on the anesthetic-binding, hydrophilic four-helix bundle and incorporates a hydrophobic domain capable of ion-channel activity, resulting in an amphiphilic four-helix bundle that forms stable monolayers at the air/water interface. The affinity of the cavity within the core of the bundle for volatile anesthetic binding is decreased by a factor of 4-3.1 mM Kd as compared to its water-soluble counterpart. Nevertheless, the absence of the cavity within the otherwise identical amphiphilic peptide significantly decreases its affinity for halothane similar to its water-soluble counterpart. Specular x-ray reflectivity shows that the amphiphilic protein orients vectorially in Langmuir monolayers at higher surface pressure with its long axis perpendicular to the interface, and that it possesses a length consistent with its design. This provides a successful starting template for probing the nature of the anesthetic-peptide interaction, as well as a potential model system in structure/function correlation for understanding the anesthetic binding mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号