首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In both the heavy and light fractions of fragmented sarcoplasmic reticulum (SR) vesicles from the fast skeletal muscle, about 27 min after beginning the active Ca2+ uptake, the extravesicular Ca2+ concentration suddenly increased to reach a steady level (delayed Ca2+ release). Phosphatidylinositol 4,5-bisphosphate (PIP2) not only shortened the time to delayed Ca2+ release but also induced prompt Ca2+ release from the heavy fraction of SR. Delayed Ca2+ release and prompt Ca2+ release stimulated by 100 microM PIP2 were not modified by ruthenium red. PIP2 (>0.1 microM) markedly accelerated the rate of 45Ca2+ efflux from SR vesicles in a concentration-dependent manner. The PIP(2)-induced 45Ca2+ efflux was potentiated by ruthenium red but profoundly inhibited by La3+. The concentration-response curve for Ca2+ or Mg2+ in PIP2-induced 45Ca2+ release was clearly different from that in the Ca(2+)-induced Ca2+ release. PIP2 caused a concentration-dependent increase in Ca2+ release from SR of chemically skinned fibers from skeletal muscle. Furthermore, [3H]ryanodine or [3H]methyl-7-bromoeudistomin D (MBED) binding to SR was increased by PIP2 in a concentration-dependent manner. These observations present the first evidence that PIP2 most likely activates two types of SR Ca2+ release channels whose properties are entirely different from those of Ca(2+)-induced Ca2+ release channels (the ryanodine receptor 1).  相似文献   

2.
The effects of calmodulin (CaM) and CaM antagonists on microsomal Ca(2+) release through a ryanodine-sensitive mechanism were investigated in rat pancreatic acinar cells. When caffeine (10 mM) was added after a steady state of ATP-dependent (45)Ca(2+) uptake into the microsomal vesicles, the caffeine-induced (45)Ca(2+) release was significantly increased by pretreatment with ryanodine (10 microM). The presence of W-7 (60 microM), a potent inhibitor of CaM, strongly inhibited the release, while W-5 (60 microM), an inactive CaM antagonist, showed no inhibition. Inhibition of the release by W-7 was observed at all caffeine concentrations (5-30 mM) tested. The presence of exogenously added CaM (10 microg/ml) markedly increased the caffeine (5-10 mM)-induced (45)Ca(2+) release and shifted the dose-response curve of caffeine-induced (45)Ca(2+) release to the left. Cyclic ADP-ribose (cADPR, 2 microM)-induced (45)Ca(2+) release was enhanced by the presence of ryanodine (10 microM). cADPR (2 microM)- or ryanodine (500 microM)-induced (45)Ca(2+) release was also inhibited by W-7 (60 microM), but not by W-5 (60 microM), and was stimulated by CaM (10 microg/ml). These results suggest that the ryanodine-sensitive Ca(2+) release mechanism of rat pancreatic acinar cells is modulated by CaM.  相似文献   

3.
Using quin2, the effects of aliphatic hydrocarbons on the system of Ca(2+)-induced Ca2+ release in isolated membranes of rabbit skeletal muscle terminal cisterns have been studied. The hydrocarbons were inserted into the membranes by means of hydrocarbon-containing liposomes. 2,2,4-Trimethylpentane (isooctane) caused a rapid release of 70-75% of Ca2+ taken up by the terminal cistern vesicles during the Ca(2+)-pump operation. This effect was inhibited by the caffeine-induced Ca2+ release blockers--Mg2+, ruthenium red and tetracaine. The same was observed with a decrease in the concentration of ATP that is known to activate the terminal cistern Ca2+ channels. The effect of 2,2,4-trimethylpentane on the longitudinal cistern fractions practically devoid of Ca(2+)-channels was insignificant. Heptane, hexane and octane caused a slow release of 5-10% of the accumulated Ca2+ from the terminal cistern vesicles; no such effect was induced by decane.  相似文献   

4.
The effect of the plant alkaloid ryanodine on the skeletal muscle sarcoplasmic reticulum Ca2+ release channel was studied by determining the Ca2+ permeability of "heavy" vesicles passively loaded with 45Ca2+ in the presence or absence of ryanodine. Depending on the experimental conditions, ryanodine either stimulated or inhibited Ca2+ efflux. Vesicles were rendered permeable to 45Ca2+ at a ryanodine concentration of 0.01 microM when diluted into a medium containing the two Ca2+ release channel inhibitors Mg2+ and ruthenium red. At ryanodine concentrations greater than 10 microM, 45Ca2+ efflux was inhibited in channel-activating (5 microM Ca2+) or -inhibiting (10 mM Mg2+ plus 10 microM ruthenium red) media. An optimal stimulatory effect was observed when vesicles were incubated with ryanodine at 37 degrees C and in media that caused partial opening of the channel. Similar results to those described above were obtained using cardiac sarcoplasmic reticulum vesicles that were capable of rapid 45Ca2+ efflux. Use of the slowly permeating molecule L-[3H]glucose allowed measurement of channel-mediated efflux rates from vesicles in the presence and absence of ryanodine. At low activating concentrations, ryanodine did not appreciably change the regulation of L-glucose efflux rates by external Ca2+, Mg2+, and adenine nucleotide. These results suggested two possible modes of action of ryanodine: 1) a change in the gating mechanism of the channel which is not readily detected using the slowly permeating molecule L-glucose or 2) a change in channel structure which prevents its complete closing.  相似文献   

5.
Melittin, a peptide from bee venom, is thought to be a phospholipase A(2) activator and Ca(2+) influx inducer that can evoke cell death in different cell types. However, the effect of melittin on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and viability has not been explored in human osteoblast-like cells. This study examined whether melittin altered [Ca(2+)](i) and killed cells in MG63 human osteosarcoma cells. [Ca(2+)](i) changes and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Melittin at concentrations above 0.075 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was abolished by removing extracellular Ca(2+). Melittin-induced Ca(2+) entry was confirmed by Mn(2+) quenching of fura-2 fluorescence at 360 nm excitation wavelength which was Ca(2+)-insensitive. The melittin-induced Ca(2+) influx was unchanged by modulation of protein kinase-C activity with phorbol 12-myristate 13-acetate (PMA) and GF 109203X, or inhibition of phospholipase A(2) with AACOCF(3) and aristolochic acid; but was substantially inhibited by blocking L-type Ca(2+) channels. At concentrations of 0.5 microM and 1 microM, melittin killed 33% and 45% of cells, respectively, via inducing apoptosis. Lower concentrations of melittin failed to kill cells. The cytotoxic effect of 1 microM melittin was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Taken together, these data showed that in MG63 cells, melittin induced a [Ca(2+)](i) increase by causing Ca(2+) entry through L-type Ca(2+) channels in a manner independent of protein kinase-C and phospholipase A(2) activity; and this [Ca(2+)](i) increase subsequently caused apoptosis.  相似文献   

6.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

7.
A Tripathy  L Xu  G Mann    G Meissner 《Biophysical journal》1995,69(1):106-119
The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channel's regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.  相似文献   

8.
The kinetics of Ca2+ release induced by the second messenger D-myoinositol 1,4,5 trisphosphate (IP3), by the hydrolysis-resistant analogue D-myoinositol 1,4,5 trisphosphorothioate (IPS3), and by micromolar Ca2+ were resolved on a millisecond time scale in the junctional sarcoplasmic reticulum (SR) of rabbit skeletal muscle. The total Ca2+ mobilized by IP3 and IPS3 varied with concentration and with time of exposure. Approximately 5% of the 45Ca2+ passively loaded into the SR was released by 2 microM IPS3 in 150 ms, 10% was released by 10 microM IPS3 in 100 ms, and 20% was released by 50 microM IPS3 in 20 ms. Released 45Ca2+ reached a limiting value of approximately 30% of the original load at a concentration of 10 microM IP3 or 25-50 microM IPS3. Ca(2+)-induced Ca2+ release (CICR) was studied by elevating the extravesicular Ca2+ while maintaining a constant 5-mM intravesicular 45Ca2+. An increase in extravesicular Ca2+ from 7 nM to 10 microM resulted in a release of 55 +/- 7% of the passively loaded 45Ca2+ in 150 ms. CICR was blocked by 5 mM Mg2+ or by 10 microM ruthenium red, but was not blocked by heparin at concentrations as high as 2.5 mg/ml. In contrast, the release produced by IPS3 was not affected by Mg2+ or ruthenium red but was totally inhibited by heparin at concentrations of 2.5 mg/ml or lower. The release produced by 10 microM Ca2+ plus 25 microM IPS3 was similar to that produced by 10 microM Ca2+ alone and suggested that IP3-sensitive channels were present in SR vesicles also containing ruthenium red-sensitive Ca2+ release channels. The junctional SR of rabbit skeletal muscle may thus have two types of intracellular Ca2+ releasing channels displaying fast activation kinetics, namely, IP3-sensitive and Ca(2+)-sensitive channels.  相似文献   

9.
A transient rise in intracellular Ca2+ during fertilization is necessary for activation of the quiescent sea urchin egg. Several mechanisms contribute to the rise in Ca2+ including influx across the egg plasma membrane and release from intracellular stores. The egg contains both IP3-sensitive and -insensitive Ca2+ release mechanisms and in this study we have used single-cell spectrofluorimetry to examine the effects of caffeine and ryanodine on Ca2+ release in eggs preloaded with fura 2. Caffeine induced a small Ca2+ release that was insensitive to heparin or ruthenium red. Ca2+ liberation by caffeine could be augmented by prior treatment with thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase. Variable Ca2+ releases were observed in response to microinjection of ryanodine. The action of ryanodine appeared to be enhanced by prior injection of heparin and partially inhibited by ruthenium red. The release of Ca2+ by caffeine or ryanodine was generally insufficient to trigger cortical granule exocytosis, thus these eggs could be fertilized and a second Ca2+ release during fertilization was measured. Unlike the caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release mechanism in somatic cells, the graded responses in eggs suggested this caffeine- and ryanodine-sensitive release mechanism is not sensitive to sudden changes in Ca2+. Thus we could examine the combined actions of caffeine and ryanodine on Ca2+ release, which were synergistic. Caffeine treatment of ryanodine-injected eggs or ryanodine injection of caffeine-treated eggs stimulated a Ca2+ release significantly larger than the release by either drug independently. The experiments presented here suggest that sea urchin eggs liberate Ca2+ in response to caffeine and ryanodine; however, the regulation of this release differs from that described for caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release of somatic cells.  相似文献   

10.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

11.
Transiently local release of Ca(2+) from the sarcoplasmic reticulum (SR) activates nearby Ca(2+)-activated K(+) channels to produce spontaneous transient outward currents (STOCs) in smooth muscle cells. The purpose of the present study was to investigate the possible effect of peroxynitrite (ONOO(-)) on STOCs in mesenteric arteriolar smooth muscle cells (ASMCs) and decide whether Ca(2+) mobilization was involved in STOCs alteration by ONOO(-). STOCs were recorded and characterized using the perforated whole-cell patch-clamp configuration. The results demonstrated that STOCs activity was greatly suppressed by removal of extracellular Ca(2+); by addition of nifedipine, a specific inhibitor of L-type voltage-gated Ca(2+) channels (VGCCs); or by addition of ryanodine, a SR ryanodine receptors (RyRs) blocker. In contrast, both caffeine, a RyR activator, and 2-aminoethoxydiphenylborate (2-APB), a membrane-permeable inositol 1,4,5-trisphosphate receptors, (IP3R) antagonist, increased STOCs activity. 3-morpholinosydnonimine (SIN-1), an ONOO(-) donor, at concentrations of 20-200 microM, induced a dose-dependent enhancement of STOCs in ASMCs and led to conspicuous increases in STOCs frequency and amplitude, which were prevented by prior exposure to low external Ca(2+) (200 nM), ryanodine (10 microM), or nifedipine (10 microM). In contrast, caffeine (0.5 mM) did not further stimulate STOCs in ASMCs preincubated with SIN-1, and pretreatment with 2-APB (50 microM) had little effect on ONOO(-) -induced STOCs activation. These findings suggest that complex Ca(2+)-mobilizing pathways, including external Ca2+ influx through VGCCs activation and subsequent internal Ca(2+) release through RyRs but not IP3Rs, are involved in ONOO(-)mediated STOCs enhancement in ASMCs.  相似文献   

12.
Y J Suzuki  W Wang  M Morad 《Cell calcium》1999,25(3):191-198
Cardiac muscle excitation-contraction coupling is controlled by the Ca(2+)-induced Ca2+ release mechanism. The present study examines the effects of a calmodulin antagonist W-7 on Ca2+ current (ICa)-induced Ca2+ release in whole cell-clamped rat ventricular myocytes. Exposure of cells to W-7 suppressed ICa, but the intracellular Ca(2+)-transients showed a lesser degree of reduction, suggesting possible enhancement of Ca(2+)-induced Ca2+ release. The effects of W-7 on the efficacy of Ca2+ release were most prominent at negative potentials. At test potentials of -30 mV, 20 microM W-7 almost completely blocked ICa, but significant Ca(2+)-transients remained, thus causing a four to six-fold increase in the efficacy of Ca(2+)-induced Ca2+ release. The depolarization-dependent Ca(2+)-transients were eliminated in absence of extracellular Ca2+, blocked by Cd2+, and were absent when the sarcoplasmic reticulum was depleted of Ca2+, implicating dependency on Ca(2+)-signaling between the L-type channel and the ryanodine receptor. W-7 mediated increase in the efficacy of Ca(2+)-induced Ca2+ release was eliminated when myocytes were dialyzed with the internal solution containing gluathione (5 mM), suggesting the possible role of cellular redox state in the regulation of Ca2+ release by the calmodulin antagonist.  相似文献   

13.
The present study was designed to test the hypothesis that cADP-ribose (cADPR) increases Ca(2+) release through activation of ryanodine receptors (RYR) on the sarcoplasmic reticulum (SR) in coronary arterial smooth muscle cells (CASMCs). We reconstituted RYR from the SR of CASMCs into planar lipid bilayers and examined the effect of cADPR on the activity of these Ca(2+) release channels. In a symmetrical cesium methanesulfonate configuration, a 245 pS Cs(+) current was recorded. This current was characterized by the formation of a subconductance and increase in the open probability (NP(o)) of the channels in the presence of ryanodine (0.01-1 microM) and imperatoxin A (100 nM). A high concentration of ryanodine (50 microM) and ruthenium red (40-80 microM) substantially inhibited the activity of RYR/Ca(2+) release channels. Caffeine (0.5-5 mM) markedly increased the NP(o) of these Ca(2+) release channels of the SR, but D-myo-inositol 1,4,5-trisphospate and heparin were without effect. Cyclic ADPR significantly increased the NP(o) of these Ca(2+) release channels of SR in a concentration-dependent manner. Addition of cADPR (0.01 microM) into the cis bath solution produced a 2.9-fold increase in the NP(o) of these RYR/Ca(2+) release channels. An eightfold increase in the NP(o) of the RYR/Ca(2+) release channels (0.0056 +/- 0.001 vs. 0.048 +/- 0.017) was observed at a concentration of cADPR of 1 microM. The effect of cADPR was completely abolished by ryanodine (50 microM). In the presence of cADPR, Ca(2+)-induced activation of these channels was markedly enhanced. These results provide evidence that cADPR activates RYR/Ca(2+) release channels on the SR of CASMCs. It is concluded that cADPR stimulates Ca(2+) release through the activation of RYRs on the SR of these smooth mucle cells.  相似文献   

14.
cADP ribose (cADPR)-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) responses were assessed in acutely dissociated adult rat ventricular myocytes using real-time confocal microscopy. In quiescent single myocytes, injection of cADPR (0.1-10 microM) induced sustained, concentration-dependent [Ca(2+)](i) responses ranging from 50 to 500 nM, which were completely inhibited by 20 microM 8-amino-cADPR, a specific blocker of the cADPR receptor. In myocytes displaying spontaneous [Ca(2+)](i) waves, increasing concentrations of cADPR increased wave frequency up to approximately 250% of control. In electrically paced myocytes (0.5 Hz, 5-ms duration), cADPR increased the amplitude of [Ca(2+)](i) transients in a concentration-dependent fashion, up to 150% of control. Administration of 8-amino-cADPR inhibited both spontaneous waves as well as [Ca(2+)](i) responses to electrical stimulation, even in the absence of exogenous cADPR. However, subsequent [Ca(2+)](i) responses to 5 mM caffeine were only partially inhibited by 8-amino-cADPR. In contrast, even under conditions where ryanodine receptor (RyR) channels were blocked with ryanodine, high cADPR concentrations still induced an [Ca(2+)](i) response. These results indicate that in cardiac myocytes, cADPR induces Ca(2+) release from the sarcoplasmic reticulum through both RyR channels and via mechanisms independent of RyR channels.  相似文献   

15.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

16.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

17.
We have studied the effects of ryanodine and inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) with thapsigargin, on both [Ca(2+)](i) and the sarcoplasmic reticulum (SR) Ca(2+) level during caffeine-induced Ca(2+) release in single smooth muscle cells. Incubation with 10 microM ryanodine did not inhibit the first caffeine-induced [Ca(2+)](i) response, although it abolished the [Ca(2+)](i) response to a second application of caffeine. To assess whether ryanodine was inducing a permanent depletion of the internal Ca(2+) stores, we measured the SR Ca(2+) level with Mag-Fura-2. The magnitude of the caffeine-induced reduction in the SR Ca(2+) level was not augmented by incubating cells with 1 microM ryanodine. Moreover, on removal of caffeine, the SR Ca(2+) levels partially recovered in 61% of the cells due to the activity of thapsigargin-sensitive SERCA pumps. Unexpectedly, 10 microM ryanodine instead of inducing complete depletion of SR Ca(2+) stores markedly reduced the caffeine-induced SR Ca(2+) response. It was necessary to previously inhibit SERCA pumps with thapsigargin for ryanodine to be able to induce caffeine-triggered permanent depletion of SR Ca(2+) stores. These data suggest that the effect of ryanodine on smooth muscle SR Ca(2+) stores was markedly affected by the activity of SERCA pumps. Our data highlight the importance of directly measuring SR Ca(2+) levels to determine the effect of ryanodine on the internal Ca(2+) stores.  相似文献   

18.
Hypertonic NaCl (160 mM added to the physiological salt solution) releases CGRP in a Ca(2+)-dependent manner from capsaicin-sensitive sensory nerves of the rat urinary bladder. The NaCl (160 mM)-evoked CGRP release was not affected by tetrodotoxin (0.3 microM), nifedipine (1 microM), omega-conotoxin (0.1 microM) and ruthenium red (10 microM). NaCl (160 mM)-evokes release of sensory neuropeptides without the involvement of axon reflexes, and by promoting Ca2+ influx via a dihydropyridine omega-conotoxin and ruthenium red insensitive pathway.  相似文献   

19.
The effects of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and inositol 1,4,5-triphosphate(InsP3) on the Ca2+ release from ATP-dependent Ca2+-transporting microsomes prepared from ox platelets were investigated. Under optimal conditions, both PtdInsP2 and InsP3 released Ca2+ from the microsomes in a similar dose-dependent manner. However, the maximal amount of Ca2+ released by InsP3 was almost one-fourth of that released by PtdInsP2. Neither PtdInsP2 nor InsP3 appeared to act as a Ca2+ ionophore since they showed no effect on the Ca2+ content of liposomes prepared from platelet microsomal lipids. InsP3-induced but not PtdInsP2-induced Ca2+ release was decreased with increasing extravesicular Ca2+ from 0.1 microM to 10 microM and it was completely inhibited by 10 microM Ca2+. PtdInsP2-induced but not InsP3-induced Ca2+ release was markedly inhibited by Mg2+, ruthenium red and neomycin. In addition, InsP3 could induce no additional Ca2+ release after the accumulated Ca2+ had been maximally released by PtdInsP2. These results indicate that PtdInsP2 releases Ca2+ from platelet microsomes more effectively than InsP3 by a mechanism distinct from that of InsP3-induced release, and further that InsP3-sensitive microsomes are included within the population of PtdInsP2-sensitive microsomes.  相似文献   

20.
We have investigated the biochemical properties of the rabbit ryanodine receptor type 1 (RyR1) from skeletal muscle functionally expressed in insect sf 21 cells infected with recombinant baculovirus. Equilibrium [3H]ryanodine binding assays applied to total membrane fractions from sf 21 cells expressing recombinant RyR1 showed a non-hyperbolic saturation curve (Hill coefficient = 2.1). The [3H]ryanodine binding was enhanced by 1 mM AMP-PCP and 10 mM caffeine, whereas 10 mM Mg(2+) and 5 microM ruthenium red reduced the specific binding. The dependence of [3H]ryanodine binding on ionic strength showed positive cooperativity (Hill coefficient = 2.2) with a plateau at 1 M KCl. The recombinant RyR1 showed a bell-shaped [3H]ryanodine binding curve when free [Ca(2+)] was increased, with an optimal concentration around 100 microM.Confocal microscopy studies using the Ca(2+) ATPase selective inhibitor, thapsigargin coupled to fluorescein and ryanodine coupled to Texas red demonstrated that the recombinant RyR1 and the Ca(2+) ATPase co-localize to the same intracellular membrane. No significant RyR1 fluorescence was observed at the plasma membrane.Fluo-4-loaded sf 21 cells expressing recombinant RyR1 responded to activating-low ryanodine concentrations (100 nM) or caffeine (10 mM) with a sharp rise in intracellular Ca2 followed by a sustained phase, in contrast, sf 21 cells expressing the human bradykinin type 2 receptor did not respond to ryanodine or caffeine.These results demonstrate the expression of recombinant RyR1 in sf 21 cells with functional properties similar to what has been previously reported for native RyR1 in mammalian tissues, however, some differences were observed in [3H]ryanodine binding assays compared to native rabbit RyR1. Hence, the baculovirus expression system provides a generous source of protein to accomplish structure-function studies and an excellent model to assess functional properties of wild type and mutant RyR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号