首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Summary The surface tension and foaminess of (a) unlimited, (b) substrate limited, and (c) oxygen transfer limited growth media of Hansenula polymorpha were measured using methanol, ethanol or glucose as a substrate.The time dependence of can be described by the Avrami-Überreiter relationship: log (2.3 log V)=n log t+log b, where V = (Oeq/(teq, and O, t and eq are at tM=0, tM=t and tM (equilibrium value).The constants n and b are functions of the fermentation time tF as long as the growth is unlimited but they are constant in the state of limited growth. With glucose substrate, the foaminess can be presented as a definite function of the time, tDG, which is necessary to attain eq. With alcohol as a substrate no definite (tDG) function was found.Symbols b constant in Eq. (1) - n constant in Eq. (1) - S substrate concentration - T temperature - tM time h (measured from the beginning of the determination of the surface tension ) - tF cultivation time h (measured from the time of inoculation) - tDG time (min) necessary to attain the equilibrium surface tension ) - X dry biomass concentration (gl–1) - V (Oeq)/(teq) - VS equilibrium volume of the foam (cm3) - VG volumetric gas flow rate during the estimation of (cm3 s–1) - vvm volumetric gas flow rate with regard to the volume of the medium (min–1) - wSG superficial gas velocity (cm s–1) - m maximum specific growth rate (h–1) - VS/VG foaminess (s) - surface tension, mMm–1 (milli Newton m–1) - O at tM=0 - eq equilibrium surface tension ( at tM) - t at tM=t - HP probes from Hansenula polymorpha cultivation - NLG non limited growth - OTLG oxygen transfer limited growth - SLG substrate limited growth  相似文献   

2.
Uptake kinetics of nitrogen derived from sewage–seawater mixtures (2.5–20% v/v effluent) were determined in the laboratory for Ulva rigida (Chlorophyceae) native from Bahía Nueva (Golfo Nuevo, Patagonia, Argentine). In terms of nitrogen concentration, experimental enrichment levels varied between 53.7 and 362.3M of ammonium and between 0.77 and 6.21M of nitrate+nitrite. Uptake rates were fitted to the Michaelis–Menten equation, with the following kinetic parameters: ammonium: Vmax = 591.2molg–1h–1, K s=262.3M, nitrate+nitrite: V max=12.9molg–1h–1, K s=3.5M). Both nutrients were taken up simultaneously, but ammonium incorporation was faster in all cases. The results show a high capability of Ulva rigida to remove sewage-derived nitrogen from culture media. In the field, most of the nitrogen provided by the effluent would be tied up in algal biomass, supporting low nitrogen levels found at a short distance away from the source.  相似文献   

3.
The production of erythritol and the erythritol yield from glucose by Torula sp. were improved, in increasing order, by supplementing with 10 mg MnSO44H2O l–1, 2 mg CuSO45H2O l–1, and both 10 mg MnSO44H2O l–1 and 2 mg CuSO45H2O l–1. Mn2+ decreased the intracellular concentration of erythritol, whereas Cu2+ increased the activity of erythrose reductase in cells. These results suggest that Mn2+ altered the permeability of cells, whereas Cu2+ increased the activity of erythrose reductase in cells.  相似文献   

4.
Adventitious shoot regeneration was observed using leaf-petiole explants from shoot-proliferating cultures of Comet red raspberry (Rubus idaeus L.). A maximum regeneration rate of 70% (3.7 shoots/explant) was obtained using 4.5–9.1 M (1–2 mg l–1) N-phenyl-N-1,2,3-thiadiazol-5-ylurea (thidiazuron or TDZ) with 2.5–4.9 M (0.5–1 mg l–1) 1H-indole-3-butanoic acid (IBA) or 2.3 M (0.5 mg l–1) TDZ with 4.9 M (1 mg l–1) IBA in modified Murashige-Skoog medium. TDZ was more effective than N-(phenylmethyl)-1H-purin-6-amine (BA) at promoting regeneration in combinations tested with IBA (maximum 50% regeneration rate; 1.8 shoots/explant). Variation in the agar concentration or incubation temperature, orientation or scoring of the leaf-petiole explants and use of separate leaf or petiole explants had no effect on shoot regeneration. Incubation in the dark for 1, 2 or 3 weeks prior to growth in the light did not influence the percent regeneration rate but depressed the number of adventitious shoots. Explant source, from micropropagated shoots or greenhouse-grown plants, had an effect on shoot regeneration that was genotype dependent. Only 8 of 22 (36%) raspberry cultivars were capable of regeneration from leaf explants derived from greenhouse-grown plants.  相似文献   

5.
Summary A strain of the yeast Lipomyces kononenkoae which converted starch into SCP with a high yield, produced three extracellular amylases which were purified from the culture fluid by Ficoll concentration, dialysis, isopropanol precipitation and DE-cellulose chromatography: an -amylase, a glucoamylase and a debranching transferase. The latter transferred -1,6-glucosyl units from panose to glucose forming maltose and appeared to have some debranching activity on amylopectin. The -amylase had the following properties: MW 38000 daltons; no effect of added calcium ions on activity; optimum temperature and pH for activity around 40°C and pH 5.5; H and S of heat inactivation 24360 cal mol–1 and 29.2 cal deg–1 mol–1; range of pH stability pH 4–6.5; pI=7.1; final low molecular weight products of starch hydrolysis, maltose and glucose; Km (40°C, pH 5.5) for starch 2.7 gl–1, for maltotriose 109 gl–1; uncompetitive inhibition by maltose with Ki (40°C, pH 5.5) 29.5 gl–1. The glucoamylase had the following properties: MW 81500 daltons; optimum temperature and pH for activity around 50°C and pH 4.5: H and S of heat inactivation 20400 cal mol–1 and 17.7 cal deg–1 mol–1; range of pH stability pH 4–6.5; pI=6.1; Km (30°C, pH 4.5) for soluble starch 16.2 gl–1, for maltose 0.36 gl–1, for p-nitrophenyl--D-glucoside 0.35 gl–1; competitive inhibition by glucose with Ki (30°C, pH 4.5) 4.7 gl–1.  相似文献   

6.
Production of -amylase by a strain of Bacillus amyloliquefaciens was investigated in a cell recycle bioreactor incorporating a membrane filtration module for cell separation. Experimental fermentation studies with the B. amyloliquefaciens strain WA-4 clearly showed that incorporating cell recycling increased -amylase yield and volumetric productivity as compared to conventional continuous fermentation. The effect of operating conditions on -amylase production was difficult to demonstrate experimentally due to the problems of keeping the permeate and bleed rates constant over an extended period of time. Computer simulations were therefore undertaken to support the experimental data, as well as to elucidate the dynamics of -amylase production in the cell recycle bioreactor as compared to conventional chemostat and batch fermentations. Taken together, the simulations and experiments clearly showed that low bleed rate (high recycling ratio) various a high level of -amylase activity. The simulated fermentations revealed that this was especially pronounced at high recycling ratios. Volumetric productivity was maximum at a dilution rate of around 0.4 h–1 and a high recycling ratio. The latter had to exceed 0.75 before volumetric productivity was significantly greater than with conventional chemostat fermentation.List of Symbols a proportionality constant relating the specific growth rate to the logarithm of G (h) - a 1 reaction order with respect to starch concentration - a 2 reaction order with respect to glucose concentration - B bleed rate (h–1) - C starch concentration (g/l) - C 0 starch concentration in the feed (g/l) - D dilution rate (h–1) - D E volumetric productivity (KNU/(mlh)) - e intracellular -amylase concentration (g/g cell mass) - E extracellular -amylase concentration (KNU/ml) - F volumetric flow rate (l/h) - G average number of genome equivalents of DNA per cell - k l intracellular equilibrium constant - k 2 intracellular equilibrium constant - k s Monod saturation constant (g/l) - k 3 excretion rate constant (h–1) - k d first order decay constant (h–1) - k gl rate constant for glucose production - k st rate constant for starch hydrolysis - k t1 proportionality constant for -amylase production (gmRNA/g substrate) - k 1 translation constant (g/(g mRNAh)) - KNU kilo Novo unit - m maintenance coefficient (g substrate/(g cell massh)) - n number of binding sites for the co-repressor on the cytoplasmic repressor - Q repression function K1/K2Q1.0 - R ratio of recycling - R s rate of glucose production (g/lh) - r c rate of starch hydrolysis (g/(lh)) - R eX retention by the filter of the compounds X: starch or -amylase - r intracellular -amylase mRNA concentration (g/g cell mass) - r C volumetric productivity of starch (g/lh) - r E volumetric productivity of intracellular -amylase (KNU/(g cell massh)) - r r volumetric productivity of intracellular mRNA (g/(g cell massh)) - r e volumetric productivity of extracellular -amylase (KNU/(mlh)) - r s volumetric productivity of glucose (g/(lh)) - r X volumetric productivity of cell mass (g/(lh)) - S 0 free reducing sugar concentration in the feed (g/l) - S extracellular concentration of reducing sugar (g/1) - t time (h) - V volume (l) - X cell mass concentration (g/l) - Y yield coefficient (g cell mass/g substrate) - Y E/S yield coefficient (KNU -amylase/g substrate) - Y E total amount of -amylase produced (KNU) - substrate uptake (g substrate/(g cell massh)) - specific growth rate of cell mass (h–1) - d specific death rate of cells (h–1) - m maximum specific growth rate of cell mass (h–1) This study was supported by Bioprocess Engineering Programme of the Nordic Industrial Foundation and the Center for Process Biotechnology, the Technical University of Denmark.  相似文献   

7.
Annual nitrogen and phosphorus budgets for the whole North Sea taking into account the most recent data available were established. The area considered has a total surface of approximately 700,000km2 and corresponds to the definition by OSPARCOM (Oslo and Paris Commission) with the exclusion of the Skagerrak and Kattegat areas. Input and output fluxes were determined at the marine, atmospheric, sediment and continental boundaries, and riverine inputs based on river flows and nutrient concentrations at the river–estuary interface were corrected for possible estuarine retention. The results showed that the North Sea is an extremely complex system subjected to large inter-annual variability of marine water circulation and freshwater land run-off. Consequently, resulting total N (TN) and P (TP) fluxes are extremely variable from 1 year to another and this has an important influence on the budget of these elements. Total inputs to the North Sea are 8870±4860kTNyear–1 and 494±279kTPyear–1. Denitrification is responsible for the loss of 23±7% of the TN inputs while sediment burial is responsible for the retention of only of 2±2% of the TP input. For TN, due to the large variability on marine and estuarine fluxes, and to the uncertainty related to the denitrification rate, it was concluded that the North Sea could either be a source (1930kTNyear–1) or a sink (1700kTNyear–1) for the waters of the North Atlantic Ocean. For TP it was concluded that the North Sea is mostly a source (–4 to 52kTPyear–1) for the waters of the North Atlantic Ocean.  相似文献   

8.
Summary Respiration of an undescribed species of soil nematode of the genus Chiloplacus from the Canadian High Arctic was measured at 2°, 5°, 10°, 15°, 20° and 25°C. The corresponding metabolic rates were 0.2697×10-3 l, 0.3406×10-3 l, 0.8408×10-3 l, 0.8539×10-3 l, 1.8420×10-3 l and 2.9360×10-3 l O2 ind-1 h-1, respectively, for a nematode of 1.0 g dry weight. The relationship between respiration and dry weight for Chiloplacus sp. at 10°C is described by the function log R=-3.0693+0.8844 log W. Q10 values for the 2°–5°, 5°–10°, 10°–15°, 15°–20° and 20°–25°C temperature intervals were 2.18, 6.09, 1.03, 4.65 and 2.54, respectively. Chiloplacus sp. showed raised metabolic rates at low tempetatures compared with species from warmer environments. Metabolic rates of representative samples of the soil, nematode fauna (dominated by individuals of the genus Plectus) from the same location were 0.1593×10-3 l, 0.3603×10-3 l and 0.5332×10-3 l O2 ind-1 h-1 at 5°, 10° and 15°C for an average nematode of 0.4297 g dry weight.  相似文献   

9.
A 20–40 m pellicular high density (3.7 g cm–3) expanded bed material has been designed for the capture of DNA and other large macromolecules. Anion exchangers fashioned out of these supports exhibited dramatically enhanced DNA binding capacities over commercial anion exchange adsorbents (6 mg ml–1, c.f. 50 g ml–1 at 10% breakthrough), due to a combination of small particle and fuzzy surface architecture created through the coupling of polyethylene imine chains.  相似文献   

10.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号