首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evoked potentials in the superior colliculus during monocular presentation of short flashes to the dark- and light-adapted eye were studied in experiments on cats anesthetized with pentobarbital. On insertion of the recording electrode deep into the superior colliculus simultaneous nonspecular inversion of the second and third components of the evoked potential was observed. The first component was not inverted. During stimulation of the retina by pairs of flashes the second response appeared when the interval between them was 70 msec. The amplitudes of the second and third components of the evoked potential decreased with an increase in the frequency of stimulation. Suggestions regarding the genesis of the various components of the evoked potential are put forward.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 21–27, January–February, 1973.  相似文献   

2.
Whereas the presence of neuropeptide-Y (NPY) in the superior colliculus (SC) has been established, its participation in the ultrastructural organisation of the neuronal networks in the SC has not been studied. Accordingly, in the present paper light and electron microscopic NPY immunohistochemical studies were performed on the SC of cat. NPY fibres were found to be present predominantly in the superficial grey layer (SGL) of the SC, though a few small NPY cells were found in both the deeper and the upper layers. Ultrastructural observations revealed that the NPY nerve endings establish almost exclusively axo-dendritic synaptic contacts in the SGL of the SC. Thus, the presumably inhibitory impact of the NPY terminals is exerted through the dendrites of the SGL neurons, and not directly to the retinal axons, as thought previously.  相似文献   

3.
Detailed morphometrical and corresponding electrotonic characteristics on three classes of cat superior colliculus (SC) neurons have been derived. The sample of cells selected for analysis comprised ascending projection neurons (APNs), inter-layer neurons (ILNs) and tecto-reticulo-spinal neurons (TRSNs) recorded intracellularly and stained with HRP. Superficial SC neurons (APNs, ILNs) could be attached to the allo- and idiodendritic type while deep layer neurons (TRSNs) belong to the isodendritic type. For each neuron, the branching pattern, lengths and diameters of the dendritic trees were determined. These data served as input to the computer program "DENDRIT" from which electrotonic membrane and transfer properties were calculated. Both the morphometrical data and the electronic properties underline the contrasting features of superficial vs deep layer neurons in the SC. Our results support the hypothesis that on the neuron level a close relationship between dendritic pattern and neuron function might exist.  相似文献   

4.
Spontaneous and evoked unit activity of the superior colliculus was studied in cats immobilized with gallamine or with the spinal cord divided (encephalé isolé). Statistical parameters of unit activity were calculated in light and darkness and in the presence of a moving photic stimulus. Spontaneously active neurons were divided into four main groups: 1) with a mean interspike interval of about 300 msec, coefficient of variation 1.9, and with two modes in the autocorrelation histogram; 2) with similar statistical parameters but distinguished by correlation with saccadic eye movements; 3) histogram of interspike intervals exponential in type, autocorrelation histogram flat, mean interval and standard deviation about 100 msec; 4) with symmetrical distribution of interspike intervals, mean interval about 50 msec, coefficient of variation 0.4–0.5. Spontaneous activity in light and darkness differed only in the neurons of the second group. Comparison of the statistical parameters of the spontaneous and evoked activity shows that encoding of the stimulus could be carried out by neurons of groups 3 and 4. In some cases the mode of the histogram of interspike intervals and the standard deviation changed significantly and activity appeared regularly in the autocorrelation histogram.  相似文献   

5.
During binocular stimulation of different sectors of the retina the amplitude of the two first postsynaptic components of the evoked potential in the superior colliculus to the second stimulus varies with the time delay between the testing and conditioning stimuli. Correlation is shown between the form of the evoked potential arising in response to the conditioning stimulus and the character of convergence of visual impluses in the superior colliculus. Qualitative differences are found in binocular interaction between sensory impulses depending on the way in which the conditioning impulses reach the region of the superior colliculus tested. An attempt is made to assess interaction between sensory volleys in the superior colliculus quantitatively.Institute of the Brain, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 133–137, March–April, 1973.  相似文献   

6.
The electrical activity of single units located in the parvicellular part of the red nucleus (pRP) was recorded extracellularly in nitrous oxide anesthetized and C1-transected adult cats. In this area, neurons were found to respond to electrical stimulation applied to intermediate and deep layers of the right superior colliculus (SC). Forty neurons located in the pRN of both sides were studied. Three neurons out of 18 (16.6%) located in the contralateral pRN and six neurons out of 22 (27.3%) located in the ipsilateral pRN were driven by the right SC stimulation. The pRN neurons were separated into four groups according to the latency response to the SC stimulation: 1) 0.6-1.9 ms, 2) 2-4 ms, 3) 4-6 ms, 4) variable latency responses. Each of these four groups of neurons showed a particular pattern of discharge, even though their discharge frequency showed a strong consistency. Four pRN neurons, which responded to SC stimulation, showed a significant correlation with spontaneous horizontal eye movements of saccadic type. It is known that the SC represents one of the main outputs of the striato-nigral motor system. The relation between the SC and the pRN described in the present study suggest that connections exist between the cortico-rubral and the striato-nigral systems, since both have the SC as a common output structure. It is likely, therefore, that the cortico-rubral-SC system is involved in the control of oculomotor functions, and that the SC may serve to establish interactions between systems concerned with eye movements.  相似文献   

7.
Specific changes occur in the cells of the upper layers of the cat's supperior collicules when a two dimensional noise (background) is superimposed onto a deterministic signal (spot of light). Some of the measurements can be interpreted as meaning that some cells only react to certain relative movements of object (spot) and background (noise). The movement of the visual background is interpreted as environmental movement occurring due to the animal's own movement. The results of the measurements provide all the necessary presuppositions for a distinction between the animal's own velocity and that of the object (Part I). The experimental results can be interpreted with a model. The essential factor for the interpretation is the direction specific behavior of the cells which is bound up with an asymmetrical spatial coupling of the neurons with each other. The decisive advantage of asymmetrical systems for the pattern recognition of moving objects is that they can work without distortion and spatial displacement over large ranges of velocity (Part II).This research was supported by DFG Grant Se 251/7. Prof. Dr.-Ing. W.v. Seelen was in charge of the project  相似文献   

8.
Postsynaptic potentials produced by stimulating three sites of the midbrain superior colliculus were examined in motoneurons innervating the sternocleidomastoid, the trapezius, and the platysma cervical muscles in anesthetized cats. Stimulating the ipsilateral colliculus produced EPSP in the motoneurons as well as action potentials with a latency of 1.5–3.5 msec, averaging 2.6 ± 0.1 msec. Stimulation of the contralateral colliculus evoked EPSP with a latency of 1.5–3.2 msec and averaging 2.1 ± 0.1 msec together with IPSP with latency ranging from 2.6 to 5.0 msec. It is postulated that these postsynaptic responses are both monosynpatic and bisynaptic in nature. This type of synaptic action is assumed to be one of the mechanisms responsible for coordinated head movements produced by tectofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 197–202, March–April, 1986.  相似文献   

9.
10.
The effect of Pulvinar-Lateral Posterior (P-LP) electrical stimulation on superior colliculus unitary responses and eye movements is analyzed in 17 encéphale isolé cats. Twelve of them were curarized. Out of a total of 190 recorded units, 117 were localized in the superior colliculus and 73 units in the Mesencephalic Reticular Formation (MRF) below the superior colliculus. Thirty eight per cent (n = 45) of the collicular units modified their discharge frequency when the ipsilateral P-LP was electrically stimulated. The current intensity thresholds of transynaptic activation had a range between 0.5 and 2.0 mA. Most of the orthodromic responses were produced by ipsilateral P-LP stimulation and were localized in the intermediate and deep layers of the superior colliculus. Three types of responses were obtained: short latency responses between 2 and 10 ms (57%); intermediate latency responses between 15 and 40 ms (29%), and long latency responses between 50 and 200 ms (14%). Thirty one per cent (n = 18) of the units recorded in the MRF responded to P-LP stimulation with 10 ms pulse-trains duration. In the MRF 3 types of responses were observed: 1) a decrease or blockade in the resting discharge during 20 to 100 ms after stimulation (20%); simple responses with a latency between 25 and 150 ms (40%), and complex responses with an early response and a latency between 15-40 ms, and a late response with a latency between 150 and 200 ms (40%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Binaurally presented click trains with gradually changing ITDs were used to imitate the sound source motion. Focal EP-trains from the cat inferior colliculus, IC, were recorded, and changing amplitude of the successive EPs following successive clicks was taken for estimation of the motion effect (ME). It was shown that a) in 25% of cases the ME depends on the motion direction; b) the ME is better presented ipsilaterally in respect to the recording point, with equal dependence on motion velocity both on the left and on the right; c) the ME phenomenon is connected with prevalence of contralateral afferentation as compared to the ipsilateral one; d) the ME is connected with inhibitory phenomena such as binaural suppression of monaural afferentation; e) the ME of the best amplitude is most pronounced in the ventrolateral area of the IC central nucleus, its localisation being near to that of the great multipolar neurones, whereas slightly and moderately pronounced MEs are presented rather uniformly over the central nucleus like the "basic" neurones are; MEs of different pronouncement are supposed to depend differently on effectiveness of ipsi- and contralateral stimulation--in accordance with properties of multipolar and "basic" neurons.  相似文献   

13.
14.
15.
In acute experiments on rats it was shown that stimulation of the superior colliculus [correction of upper bimounding] leads to the formation in the contralateral lateral geniculate [correction of external geniculated] body of a colliculus-geniculate response. The nature of the changes in a considerable degree is determined by the fact, to which neurones of the lateral geniculate [correction of external geniculated] body, the effect of contralateral superior colliculus [correction of upper bimounding] is addressed.  相似文献   

16.
It is shown that in nembutal anesthetized cats, a single stimulation of motor cortex (MC) causes a response in lateral geniculate nucleus (LGN). The development of this response had a conditioning effect on the LGN response evoked by stimulation of the contralateral superior colliculus (SC), markedly inhibiting it. The degree of this inhibition depended on the time interval between the cortical conditioning stimulation and the tectal test stimulation. A single conditioning MC stimulation did not noticeably change the LGN responses evoked by a light stimulus, but markedly inhibited visual responses from deep SC layers (those regions which on stimulation gave rise to LGN responses). From the results, it is suggested that the MC monitors the execution of tectal influences on LGN function at the tectal level rather than the geniculate level, and it is precisely by this means that it regulates saccadic suppression of LGN function, in the realization of which, as presumed earlier, the SC takes part.A. I. Karaev Institute of Physiology, Azerbaijan Academy of Sciences, Baku. Translated from Neirofiziologiya, Vol. 24, No. 4, July–August 1992.  相似文献   

17.
18.
Space coding in the superior colliculus has traditionally been viewed as a static representation by multiple, aligned, sensory and motor maps. Recent evidence has revealed that the maps are dynamic, shaped by sensory experience in developing animals, and by eye and head position signals in adults. The superior colliculus thus provides an ideal model for studying the neural mechanisms underlying developmental and real-time modifications of information representation in the brain.  相似文献   

19.
Ikeda T  Hikosaka O 《Neuron》2003,39(4):693-700
Eye movements are often influenced by expectation of reward. Using a memory-guided saccade task with an asymmetric reward schedule, we show that visual responses of monkey SC neurons increase when the visual stimulus indicates an upcoming reward. The increase occurred in two distinct manners: (1) reactively, as an increase in the gain of the visual response when the stimulus indicated an upcoming reward; (2) proactively, as an increase in anticipatory activity when reward was expected in the neuron's response field. These effects were observed mostly in saccade-related SC neurons in the deeper layer which would receive inputs from the cortical eye fields and the basal ganglia. These results, together with recent findings, suggest that the gain modulation may be determined by the inputs from both the cortical eye fields and the basal ganglia, whereas the anticipatory bias may be derived mainly from the basal ganglia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号