首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Although there are published reports of wild chimpanzees, bonobos, and orangutans hunting and consuming vertebrate prey, data pertaining to captive apes remain sparse. In this survey‐based study, we evaluate the prevalence and nature of interactions between captive great apes and various indigenous wildlife species that range into their enclosures in North America. Our hypotheses were threefold: (a) facilities housing chimpanzees will report the most frequent and most aggressive interactions with local wildlife; (b) facilities housing orangutans and bonobos will report intermediate frequencies of these interactions with low levels of aggression and killing; and (c) facilities housing gorillas will report the lowest frequency of interactions and no reports of killing local wildlife. Chimpanzees and bonobos demonstrated the most aggressive behavior toward wildlife, which matched our predictions for chimpanzees, but not bonobos. This fits well with expectations for chimpanzees based on their natural history of hunting and consuming prey in wild settings, and also supports new field data on bonobos. Captive gorillas and orangutans were reported to be much less likely to chase, catch and kill wildlife than chimpanzees and bonobos. Gorillas were the least likely to engage in aggressive interactions with local wildlife, matching our predictions based on natural history. However unlike wild gorillas, captive gorillas were reported to kill (and in one case, eat) local wildlife. These results suggest that some behavioral patterns seen in captive groups of apes may be useful for modeling corresponding activities in the wild that may not be as easily observed and quantified. Furthermore, the data highlight the potential for disease transmission in some captive settings, and we outline the associated implications for ape health and safety. Am. J. Primatol. 71:458–465, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Whether or not nonhuman primates exhibit population-level handedness remains a topic of considerable scientific debate. Here, we examined handedness for coordinated bimanual actions in a sample of 777 great apes including chimpanzees, bonobos, gorillas, and orangutans. We found population-level right-handedness in chimpanzees, bonobos and gorillas, but left-handedness in orangutans. Directional biases in handedness were consistent across independent samples of apes within each genus. We suggest that, contrary to previous claims, population-level handedness is evident in great apes but differs among species as a result of ecological adaptations associated with posture and locomotion. We further suggest that historical views of nonhuman primate handedness have been too anthropocentric, and we advocate for a larger evolutionary framework for the consideration of handedness and other aspects of hemispheric specialization among primates.  相似文献   

3.
Chimpanzees in the wild swallow the rough hispid leaves of certain plant species as a means of physically expelling intestinal parasites. A plant with such a leaf texture was introduced in 36 trial sessions to a captive group of 11 healthy adult chimpanzees to investigate the possible origin and acquisition of leaf swallowing behavior. One male (housed separately from the group during testing) and one female, both captive born, spontaneously exhibited the behavior on their first trial without prior opportunity to observe others with this plant. Six other chimpanzees on their first trial displayed a phobic response to these leaves and rejected them entirely, while another two chewed and swallowed the leaves in a normal way. Four individuals eventually exhibited the behavior, after having approached and closely observed the leaf swallowing of the first female to exhibit the behavior in the group. Four of the six individuals that initially avoided the leaves never overcame their phobia toward this plant and were not in proximity to a chimpanzee performing leaf swallowing during test sessions. Individuals born to wild chimpanzee mothers were no more likely to perform the behavior than captive-reared group mates. These results suggest that the acquisition of this behavior is based in part on a propensity to fold and swallow rough, hispid leaves, but that the acquisition and spread of leaf swallowing within a group is likely to be socially influenced. This study provides support for the hypothesis that leaf swallowing originated in the wild from opportunistic feeding behavior and was later passed down in the form of a self-medicative behavioral tradition.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

4.
Comparisons of genetic variation between humans and great apes are hampered by the fact that we still know little about the demographics and evolutionary history of the latter species. In addition, characterizing ape genetic variation is important because they are threatened with extinction, and knowledge about genetic differentiation among groups may guide conservation efforts. We sequenced multiple intergenic autosomal regions totaling 22,400 base pairs (bp) in ten individuals each from western, central, and eastern chimpanzee groups and in nine bonobos, and 16,000 bp in ten Bornean and six Sumatran orangutans. These regions are analyzed together with homologous information from three human populations and gorillas. We find that whereas orangutans have the highest diversity, western chimpanzees have the lowest, and that the demographic histories of most groups differ drastically. Special attention should therefore be paid to sampling strategies and the statistics chosen when comparing levels of variation within and among groups. Finally, we find that the extent of genetic differentiation among "subspecies" of chimpanzees and orangutans is comparable to that seen among human populations, calling the validity of the "subspecies" concept in apes into question.  相似文献   

5.
Sweet potato washing and wheat placer mining in Japanese macaques (Macaca fuscata) are among the most well known examples of local traditions in non-human animals. The functions of these behaviors and the mechanisms of acquisition and spread of these behaviors have been debated frequently. Prompted by animal caretaker reports that great apes [chimpanzees (Pan troglodytes), bonobos (Pan paniscus), gorillas (Gorilla gorilla), and orangutans (Pongo abelii)] at Leipzig Zoo occasionally wash their food, we conducted a study of food washing behaviors that consisted of two parts. In the first part we assessed the current distribution of the behavior on the basis of caretaker reports. In the second (experimental) part, we provided subjects individually with a water basin and two types of food (apples and cereal) that was either clean or covered/mixed with sand. We found that subjects of all species (except gorillas) placed apples in the water before consumption, and that they did so more often when the apples were dirty than when they were clean. Several chimpanzees and orangutans also engaged in behaviors resembling wheat placer mining.  相似文献   

6.
Analysis of mitochondrial DNA sequence variation has been used extensively to study the evolutionary relationships of individuals and populations, both within and across species. So ubiquitous and easily acquired are mtDNA data that it has been suggested that such data could serve as a taxonomic 'barcode' for an objective species classification scheme. However, there are technical pitfalls associated with the acquisition of mtDNA data. One problem is the presence of translocated pieces of mtDNA in the nuclear genome of many taxa that may be mistaken for authentic organellar mtDNA. We assessed the extent to which such 'numt' sequences may pose an overlooked problem in analyses of mtDNA from humans and apes. Using long-range polymerase chain reaction (PCR), we generated necessarily authentic mtDNA sequences for comparison with sequences obtained using typical methods for a segment of the mtDNA control region in humans, chimpanzees, bonobos, gorillas and orangutans. Results revealed that gorillas are notable for having such a variety of numt sequences bearing high similarity to authentic mtDNA that any analysis of mtDNA using standard approaches is rendered impossible. Studies on humans, chimpanzees, bonobos or orangutans are apparently less problematic. One implication is that explicit measures need to be taken to authenticate mtDNA sequences in newly studied taxa or when any irregularities arise. Furthermore, some taxa may not be amenable to analysis of mtDNA variation at all.  相似文献   

7.
Self-medication by great apes to control intestinal parasite infections has been documented at sites across Africa. Chimpanzees (Pan troglodytes) swallow the leaves of certain plant species whole, without chewing. Previous studies demonstrated a relationship between chimpanzee leaf swallowing and expulsion of nematode worms (Oesophagostomum sp.) and tapeworms (Bertiella sp.) in dung. We investigated the relationship between leaf swallowing and parasite expulsion in chimpanzees inhabiting a fragmented forest-farm mosaic at Bulindi, Uganda. During 13 months whole undigested leaves occurred in chimpanzee dung at a considerably higher frequency (10.4% of dungs) than at other sites (0.4-4.0%). Leaf swallowing occurred year-round and showed no pronounced seasonality. Chimpanzees egested adults of multiple species of Oesophagostomum (including O. stephanostomum) and proglottids of two tapeworms-Bertiella sp. and probably Raillietina sp. The latter may not be a true infection, but the byproduct of predation on domestic fowl. Compared to previous studies, the co-occurrence of whole leaves and parasites in chimpanzee dung was low. Whereas the presence of leaves in dung increased the probability of adult nematode expulsion, no association between leaf swallowing and the shedding of tapeworm proglottids was apparent. Anthropogenic habitat changes have been linked to alterations in host-parasite interactions. At Bulindi, deforestation for agriculture has increased contact between apes and people. Elevated levels of leaf swallowing could indicate these chimpanzees are especially vulnerable to parasite infections, possibly due to environmental changes and/or increased stress levels arising from a high frequency of contact with humans. Frequent self-medication by chimpanzees in a high-risk environment could be a generalized adaptation to multiple parasite infections that respond differently to the behavior. Future parasitological surveys of apes and humans at Bulindi are needed for chimpanzee health monitoring and management, and to investigate the potential for disease transmission among apes, people, and domestic animals.  相似文献   

8.
Nucleotide diversity in gorillas   总被引:9,自引:0,他引:9  
Yu N  Jensen-Seaman MI  Chemnick L  Ryder O  Li WH 《Genetics》2004,166(3):1375-1383
Comparison of the levels of nucleotide diversity in humans and apes may provide valuable information for inferring the demographic history of these species, the effect of social structure on genetic diversity, patterns of past migration, and signatures of past selection events. Previous DNA sequence data from both the mitochondrial and the nuclear genomes suggested a much higher level of nucleotide diversity in the African apes than in humans. Noting that the nuclear DNA data from the apes were very limited, we previously conducted a DNA polymorphism study in humans and another in chimpanzees and bonobos, using 50 DNA segments randomly chosen from the noncoding, nonrepetitive parts of the human genome. The data revealed that the nucleotide diversity (pi) in bonobos (0.077%) is actually lower than that in humans (0.087%) and that pi in chimpanzees (0.134%) is only 50% higher than that in humans. In the present study we sequenced the same 50 segments in 15 western lowland gorillas and estimated pi to be 0.158%. This is the highest value among the African apes but is only about two times higher than that in humans. Interestingly, available mtDNA sequence data also suggest a twofold higher nucleotide diversity in gorillas than in humans, but suggest a threefold higher nucleotide diversity in chimpanzees than in humans. The higher mtDNA diversity in chimpanzees might be due to the unique pattern in the evolution of chimpanzee mtDNA. From the nuclear DNA pi values, we estimated that the long-term effective population sizes of humans, bonobos, chimpanzees, and gorillas are, respectively, 10,400, 12,300, 21,300, and 25,200.  相似文献   

9.
Nodular worms (Oesophagostomum spp.) are common intestinal parasites found in cattle, pig, and primates including humans. In human, they are responsible for serious clinical disease called oesophagostomosis resulting from the formation of granulomas, caseous lesions or abscesses in intestinal walls. In wild great apes, the fecal prevalence of this parasite is high, but little information is available concerning the clinical signs and lesions associated. In the present study, we describe six cases of multinodular oesophagostomosis in free-ranging and ex-captive chimpanzees and captive gorillas caused by Oesophagostomum stephanostomum. While severe clinical signs associated with this infection were observed in great apes raised in sanctuaries, nodules found in wild chimpanzees do not seem to affect their health status. One hypothesis to explain this difference would be that in wild chimpanzees, access to natural environment and behavior such as rough leaves swallowing combined with ingestion of plants having pharmacological properties would prevent severe infection and decrease potential symptoms.  相似文献   

10.
This report presents data regarding the brain structure of mountain gorillas (Gorilla beringei beringei) in comparison with other great apes. Magnetic resonance (MR) images of three mountain gorilla brains were obtained with a 3T scanner, and the volume of major neuroanatomical structures (neocortical gray matter, hippocampus, thalamus, striatum, and cerebellum) was measured. These data were included with our existing database that includes 23 chimpanzees, three western lowland gorillas, and six orangutans. We defined a multidimensional space by calculating the principal components (PCs) from the correlation matrix of brain structure fractions in the well-represented sample of chimpanzees. We then plotted data from all of the taxa in this space to examine phyletic variation in neural organization. Most of the variance in mountain gorillas, as well as other great apes, was contained within the chimpanzee range along the first two PCs, which accounted for 61.73% of the total variance. Thus, the majority of interspecific variation in brain structure observed among these ape taxa was no greater than the within-species variation seen in chimpanzees. The loadings on PCs indicated that the brain structure of great apes differs among taxa mostly in the relative sizes of the striatum, cerebellum, and hippocampus. These findings suggest possible functional differences among taxa in terms of neural adaptations for ecological and locomotor capacities. Importantly, these results fill a critical gap in current knowledge regarding great ape neuroanatomical diversity.  相似文献   

11.
I used a zoological park setting to address food preferences among gorillas (Gorilla gorilla gorill) and chimpanzees (Pan troglodytes). Gorillas and chimpanzees are different sizes, and consequently, have been traditionally viewed as ecologically distinct. Sympatric western gorillas and chimpanzees have proved difficult to study in the wild. Limited field data have provided conflicting information about whether gorillas are fundamentally different from chimpanzees in diet and behavior. Fruit eating shapes the behavior of most apes, but it is unclear whether the large-bodied gorillas are an exception to this rule, specifically whether they are less selective and more opportunistic fruit eaters than chimpanzees are. My research provides experimental observational data to complement field data and to better characterize the diets and food preferences of the African apes. During laboratory research at the San Francisco Zoological Gardens, I examined individual and specific differences in food preferences of captive gorillas and chimpanzees via experimental paired-choice food trials with foods that varied in nutritional content. During the study, I offered 2500 paired-food choices to 6 individual gorillas and 2000 additional pairs to them as a group. I also proffered 600 food pairs to 4 individual chimpanzees. Despite expectations of the implications of body size differences for diet, gorillas and chimpanzees exhibited similar food preferences. Both species preferred foods high in non-starch sugars and sugar-to-fiber ratios, and low in total dietary fiber. Neither species avoided foods containing tannins. These data support other suggestions of African apes sharing a frugivorous adaptation.  相似文献   

12.
Finding food resources and maintaining a balanced diet are major concerns for all animals. A compromise between neophobia and neophilia is hypothesised to enable animals to enlarge their diet while limiting the risk of poisoning. However, little is known about how primates respond to novel food items and whether their use is socially transmitted. By comparing how four different species of great apes respond to novel food items, we investigated how differences in physiology (digestive tract size and microbial content), habitats (predictability of food availability), and social systems (group size and composition) affect their response toward novelty. We presented two familiar foods, one novel fruit, four novel aromatic plants from herbal medicine, and kaolin to captive chimpanzees (Pan troglodytes), western gorillas (Gorilla gorilla), Bornean orangutans (Pongo pygmaeus) and Sumatran orangutans (Pongo abelii). We recorded smelling, approach-taste delays, ingestion, interindividual observations, and food transfers with continuous sampling. We found that behaviors differed between the apes: chimpanzees were the most cautious species and observed their conspecifics handling the items more frequently than the other apes. Close observations and food transfers were extremely rare in gorillas in comparison to orangutans and chimpanzees. We suggest that a low neophobia level reflects an adaptive response to digestive physiological features in gorillas and to unpredictable food availability in orangutans. Social interactions appeared to be predominant in chimpanzees and in both orangutan species to overcome food neophobia. They reflect higher social tolerance and more opportunities for social learning and cultural transmission in a feeding context.  相似文献   

13.
14.
Most studies report a high prevalence of linear enamel hypoplasia (LEH) in the great apes relative to other nonhuman primates and some human populations. It is unclear if this difference is a direct result of poor health status for the great apes, or if it represents differential incidence due to a lower threshold (sensu Goodman and Rose, 1990 Am. J. Phys. Anthropol. [suppl.] 33:59-110) for the occurrence of enamel hypoplasia among great apes. This study uses the Smithsonian National Museum of Natural History's great ape collection to examine the prevalence of LEH, the most common type of hypoplasia observed. Frequencies of LEH are reported, as well as analyses by taxa and provenience. The study sample consists of 136 specimens and includes 41 gorillas, 25 chimpanzees, and 70 orangutans. Analyses of frequencies are presented for both individuals and teeth by taxonomic category and locality. Among the individuals in this study, 63.97% are affected by LEH. Overall, gorillas (29.27%) exhibit lower frequencies of LEH than chimpanzees (68.00%) and orangutans (82.86%). There is a marked difference in LEH frequencies between mountain and lowland gorillas. There is no difference in LEH frequencies between Sumatran and Bornean orangutans. A range of variation for the great apes in enamel hypoplasia frequencies is found when taxon and locality are considered. It is likely that both biological and environmental factors influence the high frequencies of enamel hypoplasia exhibited in the great apes.  相似文献   

15.
The medical problems of great apes including gorillas (Gorilla gorilla), orangutans (Pongo pymaeus), and chimpanzees (Pan sp.) published during the last decade are reviewed. Anesthetic techniques, diseases or organ systems, neoplasia, infectious diseases, and reproductive problems are reviewed. Gonadal tumors and atherosclerosis in great apes appear frequently in the literature. Diseases with suspected viral etiology include papillomas in chimpanzees, retrovirus-associated lymphomas in gorillas, and various herpesvirus disease. Technology developed for human medicine has expanded the diagnostic opportunities for clinicians working with great apes.  相似文献   

16.
Current models of social organization assume that predation is one of the major forces that promotes group living in diurnal primates. As large body size renders some protection against predators, gregariousness of great apes and other large primate species is usually related to other parameters. The low frequency of observed cases of nonhuman predation on great apes seems to support this assumption. However, recent efforts to study potential predator species have increasingly accumulated direct and indirect evidence of predation by leopards (Panthera pardus) on chimpanzees and gorillas. The following report provides the first evidence of predation by a leopard on bonobos (Pan paniscus).  相似文献   

17.
18.
A total 202 social staring episodes (prolonged gazing by one individual toward another within a short distance) were observed in various social contexts among six unrelated, adult, and subadult male mountain gorillas. Staring was not accompanied by distinct facial expressions by actors or recipients, irrespective of their age or dominance rank. Younger, subordinate animals tended to stare at elder, dominant animals more frequently than vice versa. Staring may have multiple functions depending on the social context. In the initiation of non-agonistic interactions, staring rarely occurred, but was very successful for younger males in eliciting play or homosexual interactions from older animals. Staring was also directed by younger males to older males for greeting or appeasement. It may possibly play a role in reducing the increased social tension that occurs during or after conflict and in averting the potential conflict among older males. Younger males occasionally supplanted older males by staring at feeding spots. This slow supplantation is similar to the phenomenon of food sharing achieved through begging behavior in chimpanzees and bonobos. A prolonged gaze including staring by subordinates towards dominants may characterize the frequent and prolonged face-to-face interactions in the African great apes, and contrasts with a frequent gaze aversion by subordinates towards dominants in macaques or baboons. A difference between gorillas and other apes is that, chimpanzees and bonobos make positive contact with each other through eye contact, while gorillas simply stare at another without physical contact in greeting or appeasement process. Staring may serve an effective strategy for younger male gorillas to intervene safely in olders' conflict and sometimes to suppress or inhibit olders' performance, but their non-agonistic contacts or supporting attacks may not contribute to the establishment or support of social bonds between them. It is possible that staring may be common among the African great apes and man, and that it has evolved as a tactics to mask the dominant/subordinate relationships between individuals with multiple functions.  相似文献   

19.
The early gesturing of six bonobos, eight chimpanzees, three gorillas, and eight orangutans was systematically documented using focal animal sampling. Apes' were observed during their first 20 months of life in an effort to investigate: (i) the onset of gesturing; (ii) the order in which signals of different sensory modalities appear; (iii) the extent to which infants make use of these modalities in their early signaling; and (iv) the behavioral contexts where signals are employed. Orangutans differed in important gestural characteristics to African ape species. Most notably, they showed the latest gestural onset and were more likely to use their early signals in food-related interactions. Tactile and visual signals appeared similarly early across all four species. In African apes, however, visual signaling gained prominence over time while tactile signaling decreased. These findings suggest that motor ability, which encourages independence from caregivers, is an important antecedent, among others, in gestural onset and development, a finding which warrants further investigation.  相似文献   

20.
This study examines variability in masticatory morphology as a function of dietary preference among the African apes. The African apes differ in the degree to which they consume leaves and other fibrous vegetation. Gorilla gorilla beringei, the eastern mountain gorilla, consumes the most restricted diet comprised of mechanically resistant foods such as leaves, pith, bark, and bamboo. Gorilla gorilla gorilla, the western lowland gorilla subspecies, consumes leaves and other terrestrial herbaceous vegetation (THV) but also consumes a fair amount of ripe, fleshy fruit. In contrast to gorillas, chimpanzees are frugivores and rely on vegetation primarily as fallback foods. However, there has been a long-standing debate regarding whether Pan paniscus, the pygmy chimpanzee (or bonobo), consumes greater quantities of THV as compared to Pan troglodytes, the common chimpanzee. Because consumption of resistant foods involves more daily chewing cycles and may require larger average bite force, the mechanical demands placed on the masticatory system are expected to be greater in folivores as compared to primates that consume large quantities of fleshy fruit. Therefore, more folivorous taxa are predicted to exhibit features that improve load-resistance capabilities and increase force production. To test this hypothesis, jaw and skull dimensions were compared in ontogenetic series of G. g. beringei, G. g. gorilla, P. t. troglodytes, and P. paniscus. Controlling for the influence of allometry, results show that compared to both chimpanzees and bonobos, gorillas exhibit some features of the jaw complex that are suggestive of improved masticatory efficiency. For example, compared to all other taxa, G. g. beringei has a significantly wider mandibular corpus and symphysis, larger area for the masseter muscle, higher mandibular ramus, and higher mandibular condyle relative to the occlusal plane of the mandible. However, the significantly wider mandibular symphysis may be an architectural response to increasing symphyseal curvature with interspecific increase in size. Moreover, Gorilla and Pan do not vary consistently in all features, and some differences run counter to predictions based on dietary variation. Thus, the morphological responses are not entirely consonant with predictions based on hypothesized loading regimes. Finally, despite morphological differences between bonobos and chimpanzees, there is no systematic pattern of differentiation that can be clearly linked to differences in diet. Results indicate that while some features may be linked to differences in diet among the African apes, diet alone cannot account for the patterns of morphological variation demonstrated in this study. Allometric constraints and dental development also appear to play a role in morphological differentiation among the African apes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号