首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Malathion is a pesticide with high potential for human exposure. However, it is possible that during the malathion metabolism, there is generation of reactive oxygen species (ROS) and malathion may produce oxidative stress in intoxicated rats. The present study was therefore undertaken to determine malathion-induced lipid peroxidation (LPO), protein carbonylation and to determine whether malathion intoxication alters the antioxidant system in brain rats. Malathion was administered intraperitoneally in the acute and chronic protocols in the doses of 25, 50, 100 and 150 mg malathion/kg. The results showed that LPO in brain increased in both protocols. The increased oxidative stress resulted in an increased in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), observed in cortex, striatum in the acute malathion protocol and hippocampus in the chronic malathion protocol. Our results demonstrated that malathion induced oxidative stress and modulated SOD and CAT activity in selective brain regions.  相似文献   

3.
Thirty minutes of total cerebral ischemia (decapitation) decreased total glutathione (GSH + GSSG) by 7% but had no detectable effect on the concentration of oxidized glutathione (GSSG), reduced ascorbate, or total ascorbate. In a model of reversible, bilateral hemispheric ischemia (four-vessel occlusion) no changes in glutathione or ascorbate were detected after 30 min of ischemia. During 24 h of reperfusion following such an insult no detectable change in total ascorbate, reduced ascorbate, or oxidized glutathione was noted; however, total brain glutathione declined by 25%. The findings are discussed in relation to the hypothesis that the deleterious effects of ischemia are due to an increase in free radical production which in turn leads to increased lipid peroxidation.  相似文献   

4.
Venlafaxine is an approved antidepressant that is an inhibitor of both serotonin and norepinephrine transporters. Medical treatment with oral venlafaxine can be beneficial to depression due to reducing free radical production in the brain and medulla of depression- induced rats because oxidative stress may a play role in some depression. We investigated the effect of venlafaxine administration and experimental depression on lipid peroxidation and antioxidant levels in cortex brain, medulla and erythrocytes of rats. Thirty male wistar rats were used and were randomly divided into three groups. Venlafaxine (20 mg/kg) was orally supplemented to depression-induced rats constituting the first group for four week. Second group was depression-induced group although third group was used as control. Depressions in the first and second groups were induced on day zero of the study by chronic mild stress. Brain, medulla and erythrocytes samples were taken from all animals on day 28. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity and vitamin C concentrations of cortex brain, glutathione (GSH) value of medulla although their levels were increased by venlafaxine administration to the animals of depression group. The lipid peroxidation levels in the three tissues and nitric oxide value in cortex brain elevated although their levels were decreased by venlafaxine administration. There were no significant changes in cortex brain vitamin A, erythrocytes vitamin C, GSH-Px and GSH, medulla vitamin A, GSH and GSH-Px values. In conclusion, cortex brain within the three tissues was most affected by oxidative stress although there was the beneficial effect of venlafaxine in the brain of depression-induced rats on investigated antioxidant defenses in the rat model. The treatment of depression by venlafaxine may also play a role in preventing oxidative stress. Abstract of the paper was submitted in 1st Ion Channels and Oxidative Stress Congress, 14–16 September 2006, Isparta, Turkey.  相似文献   

5.
We examined effects of a plant polyphenolic compound, curcumin, against fluoride-induced oxidative stress in the rat brain. Five experimental groups of male rats (10 animals each) were compared. Animals of these experimental groups were treated with curcumin (10 and 20 mg/kg body mass), vitamin C (10 mg/kg), and sample solvent (0.5 ml) for a week prior to sodium fluoride intoxication. After treatment, rats of the experimental groups, except for the normal control group, were intoxicated with sodium fluoride (600 ppm through drinking water) for a week. Then, brains were collected and homogenized, and activities of superoxide dismutase and catalase and levels of reduced glutathione and lipid peroxidation final products were evaluated in the brain tissue homogenates. Treatment with curcumin prior to fluoride intoxication significantly normalized the above biochemical parameters; the intensity of protective effects of 20 mg/kg curcumin was close to that of vitamin C.  相似文献   

6.
The antioxidant capabilities of phosphatidylethanolamine plasmalogen (PlsEtn), in vivo, against lipid peroxidation were investigated via acute phosphine (PH3) administration in rats. Oxidative stress was assessed from measures of malondialdehyde and various enzyme activities, while NMR analyses of lipid and aqueous tissue extracts provided metabolic information in cerebellum, brainstem, and cortex. Brainstem had the highest basal [PlsEtn], and showed only moderate PH3-induced oxidative damage with no loss of ATP. The lowest basal [PlsEtn] was observed in cortex, where PH3 caused a 51% decrease in [ATP]. The largest oxidative effect occurred in cerebellum, but [ATP] was unaffected. Myo-inositol+ethanolamine pretreatment attenuated all PH3 effects. Specifically, the pretreatment attenuated the ATP decrease in cortex, and elevated brain [PlsEtn] in the cerebellum, nearly abolishing the cerebellar oxidative effects. Our data suggest a high basal [PlsEtn], or the capacity to synthesize new ethanolamine lipids (particularly PlsEtn) may protect against PH3 toxicity.  相似文献   

7.
Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.  相似文献   

8.
《Free radical research》2013,47(3):183-188
The relationship between glutathione peroxidase (GSH-Px) activity and opsonized zymosan-induced chemiluminescence (CL) has been studied with exudate leukocytes obtained at different times after induction of inflammatory responses in the mouse peritoneal cavity with heat-killed Corynebacterium parvum and in the rat pleural cavity with I-carrageenin. GSH-Px activity in mouse peritoneal exudate cells fell markedly after 2–4h, returning to normal within 1–2 days. The lowered enzyme activity was associated with an increased ability of the cells to generate CL. Rat pleural exudate cells exhibited a slight fall in GSH-Px activity after 6h which increased to supranormal levels within 1–2 days. During this period the ability of the cells to generate CL continually increased. The data indicate that during the early phase of increased generation of reactive oxygen species (ROS) by inflammatory leukocytes, the intracellular protective mechanism, represented by GSH-Px, is compromised. Subsequently, GSH-Px activity increases to or above initial levels possibly due to the presence of mononuclear cells and/or as a response to the increased generation of ROS.  相似文献   

9.
Multigenerational evaluation was made in rats on exposure to high fluoride (100 and 200 ppm) to assess neurotoxic potential of fluoride in discrete areas of the brain in terms of lipid peroxidation and the activity of antioxidant enzyme system. The rats were given fluoride through drinking water (100 and 200 ppm) and maintained subsequently for three generations. Fluoride treatment significantly increased the lipid peroxidation and decreased the activity of antioxidant enzymes viz, catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione level in first-generation rats and these alterations were more pronounced in the subsequent second and third-generation rats in both the doses tested. Decreased feed and water consumption, litter size and organ (brain) somatic index, marginal drop in body growth rate and mortality were observed in all three generations. Decreased antioxidant enzyme activity and increased malondialdehyde levels found in the present study might be related to oxidative damage that occurs variably in discrete regions of the brain. Results of this study can be taken as an index of neurotoxicity in rats exposed to water fluoridation over several generations.  相似文献   

10.
Hereditary fructose intolerance is an autosomal recessive disorder characterized by the accumulation of fructose in tissues and biological fluids of patients. The disease results from a deficiency of aldolase B, responsible for metabolizing fructose in the liver, kidney, and small intestine. We investigated the effect of acute fructose administration on oxidative stress and neuroinflammatory parameters in the cerebral cortex of 30-day-old Wistar rats. Animals received subcutaneous injection of sodium chloride (0.9 %) (control group) or fructose solution (5 μmol/g) (fructose group). One hour later, the animals were euthanized and the cerebral cortex was isolated. Oxidative stress (levels of thiobarbituric acid-reactive substances (TBA-RS), carbonyl content, nitrate and nitrite levels, 2′,7′-dihydrodichlorofluorescein (DCFH) oxidation, glutathione (GSH) levels, as well as the activities of catalase (CAT) and superoxide dismutase (SOD)) and neuroinflammatory parameters (TNF-α, IL-1β, and IL-6 levels and myeloperoxidase (MPO) activity) were investigated. Acute fructose administration increased levels of TBA-RS and carbonyl content, indicating lipid peroxidation and protein damage. Furthermore, SOD activity increased, whereas CAT activity was decreased. The levels of GSH, nitrate, and nitrite and DCFH oxidation were not altered by acute fructose administration. Finally, cytokines IL-1β, IL-6, and TNF-α levels, as well as MPO activity, were not altered. Our present data indicate that fructose provokes oxidative stress in the cerebral cortex, which induces oxidation of lipids and proteins and changes of CAT and SOD activities. It seems therefore reasonable to propose that antioxidants may serve as an adjuvant therapy to diets or to other pharmacological agents used for these patients, to avoid oxidative damage to the brain.  相似文献   

11.
Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days), haloperidol alone (2 mg/kg i.p for 21 days), and haloperidol with alpha lipoic acid groups (for 21 days). Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.  相似文献   

12.
This study was carried out to investigate the effects of lithium (Li) supplementation on aluminium (Al) induced changes in antioxidant defence system and histoarchitecture of cerebrum and cerebellum in rats. Al was administered in the form of aluminium chloride (100 mg/kg b.wt./day, orally) and Li was given in the form of Li carbonate through diet (1.1 g/kg diet, daily) for a period of 2 months. Al treatment significantly enhanced the levels of lipid peroxidation and reactive oxygen species in both the cerebrum and cerebellum, which however were decreased following Li supplementation. The enzyme activities of catalase, superoxide dismutase (SOD) and glutathione reductase (GR) were significantly increased in both the regions following Al treatment. Li administration to Al-fed rats decreased the SOD, catalase and GR enzyme activities in both the regions; however, in cerebellum the enzyme activities were decreased in comparison to normal controls also. Further, the specific activity of glutathione-s-transferase and the levels of total and oxidized glutathione were significantly decreased in cerebrum and cerebellum following Al treatment, which however showed elevation upon Li supplementation. The levels of reduced glutathione were significantly decreased in cerebrum but increased in cerebellum following Al treatment, which however were normalized upon Li supplementation but in cerebellum only. Apart from the biochemical changes, disorganization in the layers of cerebrum and vacuolar spaces were also observed following Al treatment indicating the structural damage. Similarly, the loss of purkinje cells was also evident in cerebellum. Li supplementation resulted in an appreciable improvement in the histoarchitecture of both the regions. Therefore, the study shows that Li has a potential to exhibit neuroprotective role in conditions of Al-induced oxidative stress and be explored further to be treated as a promising drug against neurotoxicity.  相似文献   

13.
Free radicals mediated damage of phospholipids, proteins and nucleic acids results in subsequent neuronal degeneration and cell loss. Aim of this study was to evaluate the existence of lipid and protein oxidative damage and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in various rat brain structures 24 h after lateral fluid percussion brain injury (LFPI). Parietal cortex, hippocampus, thalamus, entorhinal cortex, and cerebellum from the ipsilateral hemisphere were processed for analyses of the thiobarbituric acid reactive substances (TBARS) and oxidized protein levels as well as for the SOD and GSH-Px activities. Immunohistochemical detection of oxidized proteins was also performed. Results of our study showed that LFPI caused significant oxidative stress in the parietal cortex and hippocampus while other brain regions tested in this study were not oxidatively altered by LFPI. GSH-Px activities were significantly increased in the parietal cortex and hippocampus, while the SOD activities remained unchanged following LFPI in all regions investigated.  相似文献   

14.
Regional Distribution of Glutathione Peroxidase in the Adult Rat Brain   总被引:1,自引:8,他引:1  
Glutathione peroxidase activity was measured in 10 areas of perfused adult rat brain with the use of a fluorometric assay coupled to NADPH oxidation. The caudate-putamen and the substantia nigra had the highest activities. Cortical areas and several nuclear areas had somewhat lower activity. Activity was lowest in a white matter structure (corpus callosum). High activity of glutathione peroxidase may be related to the need to reduce hydrogen peroxide arising in the course of monoamine metabolism.  相似文献   

15.
Decreased antioxidant activity is considered as one of the causes of tardive dyskinesia in schizophrenic patients in a prolonged neuroleptic treatment course. Haloperidol (HAL) has been hypothesized to increase oxidative stress, while clozapine (CLO) would produce less oxidative damage. The objective was to determine whether CLO for 28 days could reverse or attenuate HAL-induced oxidative damage in animals previously treated with HAL for 28 days. HAL significantly increased thiobarbituric acid reactive substances levels in the cortex (CX) and striatum and increased protein carbonyls in hippocampus (HP) and CX and this was not attenuated by CLO treatment. In the total radical trapping antioxidant parameter assay there was a decrease in the HP total antioxidant potential induced by HAL and by treatment with HAL + CLO. Our findings demonstrated that the atypical antipsychotic CLO could not revert oxidative damage caused by HAL.  相似文献   

16.
We investigated the effects of lamotrigine, aripiprazole and escitalopram administration and experimental depression on lipid peroxidation (LP) and antioxidant levels in cortex of the brain in rats. Forty male wistar rats were randomly divided into five groups. First group was used as control although second group was depression-induced group. Aripiprazole, lamotrigine and escitalopram per day were orally supplemented to chronic mild stress (CMS) depression-induced rats constituting the third, fourth and fifth groups for 28 days, respectively. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity, reduced glutathione and vitamin C of cortex of the brain although their levels and beta-carotene concentrations were increased by the three drugs administrations to the animals of CMS induced depression group. The LP levels in the cortex of the brain and plasma of depression group were elevated although their levels were decreased by the administrations. The increases of antioxidant values in lamotrigine group were higher according to aripiprazole and escitalopram supplemented groups. Vitamin A level did not change in the five groups. In conclusion, the experimental depression is associated with elevated oxidative stress although treatment with lamotrigine has most protective effects on the oxidative stress within three medicines.  相似文献   

17.
Abstract: Oxidative stress and free radical damage have been implicated in the neurodegenerative changes characteristic of several neurodegenerative diseases, including Alzheimer's disease. There is experimental evidence that the neurotoxicity of β-amyloid is mediated via free radicals, and as the deposition of β-amyloid apparently precedes the formation of paired helical filaments (PHF) in Alzheimer's disease, we have investigated whether subjecting primary neuronal cultures to oxidative stress induces changes in the phosphorylation state of the principal PHF protein τ that resemble those found in PHF-τ. Contrary to causing an increase in τ phosphorylation, treatment of neurones with hydrogen peroxide caused a dephosphorylation of τ and so we conclude that oxidative stress is not the direct cause of τ hyperphosphorylation and hence of PHF formation.  相似文献   

18.
Chronic exposure to carbofuran, a carbamate pesticide, via oral administration has been reported to generate reactive oxygen species (ROS) in rat brain. However, information regarding the effect of short-term intraperitoneal (i.p.) carbofuran intoxication on oxidative stress is lacking. In the present study, the effect of carbofuran on oxidative indices in brain of Wistar rats has been determined by exposing the animals to three subacute concentrations (0.2, 0.4 and 0.8 mg/kg body weight) equivalent to 10, 20, and 40%, respectively, of its LD50 (i.p.) for 24 h. Rat liver has been used as a positive control. The results demonstrated that carbofuran treatment at the 3 concentrations tested caused significant increase in lipid peroxidation (LPO) by 12.50, 34.38, and 59.38%, respectively. The increased oxidative stress at same pesticide concentrations significantly induced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase in rat brain; the impact on catalase being more marked only at high-pesticide doses (0.4 and 0.8 mg/kg body weight). Carbofuran also caused reduction in protein content of rat tissues tested. Rat brain was more severely affected by carbofuran than liver. The results clearly demonstrated that i.p. administration of carbofuran accelerated oxidative stress in rat brain in a dose-dependent manner.  相似文献   

19.
This study was aimed to investigate the effect of extremely low-frequency magnetic field (ELF-MF) on apoptosis and oxidative stress values in the brain of rat. Rats were exposed to 100 and 500 µT ELF-MF, which are the safety standards of public and occupational exposure for 2 h/day for 10 months. Brain tissues were immunohistochemically stained for the active (cleaved) caspase-3 in order to measure the apoptotic index by a semi-quantitative scoring system. In addition, the levels of catalase (CAT), malondialdehyde (MDA), myeloperoxidase (MPO), total antioxidative capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in rat brain. Final score of apoptosis and MPO activity were not significantly different between the groups. CAT activity decreased in both exposure groups (p?<?0.05), while TAC was found to be lower in ELF 500 group than those in ELF-100 and sham groups (p?<?0.05). MDA, TOS, and OSI values were found to be higher in ELF-500 group than those in ELF-100 and sham groups (p?<?0.05). In conclusion, apoptosis was not changed by long-term ELF-MF exposure, while both 100 and 500 µT ELF-MF exposure induced toxic effect in the rat brain by increasing oxidative stress and diminishing antioxidant defense system.  相似文献   

20.
Aging is characterized by a gradual and continuous loss of physiological functions and responses particularly marked in the central nervous system. Reactive oxygen species (ROS) can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since proteins are the major components of biological systems and regulate multiple cellular pathways, oxidative damage of key proteins are considered to be the principal molecular mechanisms leading to age-related deficits. Recent evidences support the notion that a decrease of energy metabolism in the brain contribute to neuronal loss and cognitive decline associated with aging. In the present study we identified selective protein targets which are oxidized in aged rats compared with adult rats. Most of the oxidatively modified proteins we found in the present study are key proteins involved in energy metabolism and ATP production. Oxidative modification of these proteins was associated with decreased enzyme activities. In addition, we also found decreased levels of thiol reducing system. Our study demonstrated that oxidative damage to specific proteins impairs energy metabolism and ATP production thus contributing to shift neuronal cells towards a more oxidized environment which ultimately might compromise multiple neuronal functions. These results further confirm that increased protein oxidation coupled with decreased reducing systems are characteristic hallmarks of aging and aging-related degenerative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号