首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate immunity is evolutionarily conserved in multicellular organisms and was considered to lack memory until very recently. One of its more characteristic mechanisms is phagocytosis, the ability of cells to engulf, process and eventually destroy any injuring agent. We report the results of an ex vivo experiment in bovine macrophages in which improved clearance of Mycobacterium bovis (M. bovis) was induced by pre-exposure to a heat killed M. bovis preparation. The effects were independent of humoral and cellular adaptive immune responses and lasted up to six months. Specifically, our results demonstrate the existence of a training effect in the lytic phase of phagocytosis that can be activated by killed mycobacteria, thus suggesting a new mechanism of vaccine protection. These findings are compatible with the recently proposed concept of trained immunity, which was developed to explain the observation that innate immune responses provide unspecific protection against pathogens including other than those that originally triggered the immune response.  相似文献   

2.
The activity of several cuproenzymes in relation to the immune system was examined in serum and blood cells from bovines with molybdenum-induced copper deficiency. Five female cattle were given molybdenum (30 ppm) and sulfate (225 ppm) to induce experimental secondary copper deficiency. Ceruloplasmin activity was determined in serum. The Cu,Zn-superoxide dismutase and cytochrome c oxidase activities were measured in peripheral blood lymphocytes, neutrophils, and monocyte-derived macrophages. Copper deficiency was confirmed from decreased serum copper levels and the animals with values less than 5.6 μmol/L were considered deficient. The content of intracellular copper decreased between 40% and 70% in deficient cells compared with the controls. In copper-deficient animals, the serum ceruloplasmin activity decreased to half of the control value. Both of them, the Cu,Zn-superoxide dismutase and the cytochrome c oxidase activities, undergo a significant reduction in leukocytes, showing differences among diverse cell populations. We concluded that the copper deficiency alters the activity of several enzymes, which mediate antioxidant defenses and ATP formation. These effects may impair the cell immune functionality, affecting the bactericidal capacity and making the animals more susceptible to infection.  相似文献   

3.
Background Mycobacterium tuberculosis causes the majority of tuberculosis (TB) cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City.Conclusions/SignificanceThere is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.  相似文献   

4.
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen multiplication and promote survival, facilitating pathogen transmission.  相似文献   

5.
The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa–induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW) mice that are typically resistant to P. aeruginosa–induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF) mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß–dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.  相似文献   

6.
7.
Bovine tuberculosis (TB) caused by Mycobacterium bovis is a significant health threat to cattle and a zoonotic threat for humans in many developing countries. Rapid and accurate detection of M. bovis is fundamental for controlling the disease in animals and humans, and for the proper treatment of patients as one of the first-line anti-TB drug, pyrazinamide, is ineffective against M. bovis. Currently, there are no rapid, simplified and low-cost diagnostic methods that can be easily integrated for use in many developing countries. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for specific identification of M. bovis by targeting the region of difference 4 (RD4), a 12.7 kb genomic region that is deleted solely in M. bovis. The assay''s specificity was evaluated using 139 isolates comprising 65 M. bovis isolates, 40 M. tuberculosis isolates, seven M. tuberculosis complex reference strains, 22 non-tuberculous mycobacteria and five other bacteria. The established LAMP detected only M. bovis isolates as positive and no false positives were observed using the other mycobacteria and non-mycobacteria tested. Our LAMP assay detected as low as 10 copies of M. bovis genomic DNA within 40 minutes. The procedure of LAMP is simple with an incubation at a constant temperature. Results are observed with the naked eye by a color change, and there is no need for expensive equipment. The established LAMP can be used for the detection of M. bovis infections in cattle and humans in resource-limited areas.  相似文献   

8.
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly affect humans and animals worldwide. The life cycle of mycobacteria is complex and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Recently, comparative genomics analyses have provided new insights into the evolution and adaptation of the MTBC to survive inside the host. However, most of this information has been obtained using M. tuberculosis but not other members of the MTBC such as M. bovis and M. caprae. In this study, the genome of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different lesion score, prevalence and host distribution phenotypes were sequenced. Genome sequence information was used for whole-genome and protein-targeted comparative genomics analysis with the aim of finding correlates with phenotypic variation with potential implications for tuberculosis (TB) disease risk assessment and control. At the whole-genome level the results of the first comparative genomics study of field isolates of M. bovis including M. caprae showed that as previously reported for M. tuberculosis, sequential chromosomal nucleotide substitutions were the main driver of the M. bovis genome evolution. The phylogenetic analysis provided a strong support for the M. bovis/M. caprae clade, but supported M. caprae as a separate species. The comparison of the MB1 and MB4 isolates revealed differences in genome sequence, including gene families that are important for bacterial infection and transmission, thus highlighting differences with functional implications between isolates otherwise classified with the same spoligotype. Strategic protein-targeted analysis using the ESX or type VII secretion system, proteins linking stress response with lipid metabolism, host T cell epitopes of mycobacteria, antigens and peptidoglycan assembly protein identified new genetic markers and candidate vaccine antigens that warrant further study to develop tools to evaluate risks for TB disease caused by M. bovis/M.caprae and for TB control in humans and animals.  相似文献   

9.
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection.  相似文献   

10.
Genetic variation in susceptibility to pathogens is a central concern both to medicine and agriculture and to the evolution of animals. Here, we have investigated the link between such natural genetic variation and the immune response in wild-type Drosophila melanogaster, a major model organism for immunological research. We found that within nine wild-type strains, different Drosophila genotypes show wide-ranging variation in their ability to survive infection from the pathogenic bacteria Listeria monocytogenes. Canton-S, a resistant strain, showed increased capacity to induce stronger innate immune activities (antimicrobial peptides (AMPs), phenol oxidase activity, and phagocytosis) compared to the susceptible strain (white) at early time points during bacterial infection. Moreover, PGRP-LE-induced innate immune activation immediately after infection greatly improves survival of the susceptible strain strongly suggesting a mechanism behind the natural genetic variation of these two strains. Taken together we provide the first experimental evidence to suggest that differences in innate immune activity at early time points during infection likely mediates infection susceptibility in Drosophila.  相似文献   

11.
Mycobacterium bovis is the causative agent of tuberculosis in a wide range of mammals, including humans. Macrophages are the first line of host defense. They secrete proinflammatory cytokines, such as interleukin-1 beta (IL-1β), in response to mycobacterial infection, but the underlying mechanisms by which human macrophages are activated and release IL-1β following M. bovis infection are poorly understood. Here we show that the ‘nucleotide binding and oligomerization of domain-like receptor (NLR) family pyrin domain containing 7 protein’ (NLRP7) inflammasome is involved in IL-1β secretion and caspase-1 activation induced by M. bovis infection in THP-1 macrophages. NLRP7 inflammasome activation promotes the induction of pyroptosis as well as the expression of tumor necrosis factor alpha (TNF-α), Chemokine (C-C motif) ligand 3 (CCL3) and IL-1β mRNAs. Thus, the NLRP7 inflammasome contributes to IL-1β secretion and induction of pyroptosis in response to M. bovis infection in THP-1 macrophages.  相似文献   

12.
Infection of humans with Mycobacterium tuberculosis remains frequent and may still lead to death. After primary infection, the immune system is often able to control M. tuberculosis infection over a prolonged latency period, but a decrease in immune function (from HIV to immunosenescence) leads to active disease. Available vaccines against tuberculosis are restricted to BCG, a live vaccine with an attenuated strain of M. bovis. Immunodeficiency may not only be associated with an increased risk of tuberculosis, but also with local or disseminated BCG infection. Genetic deficiency in the reactive oxygen species (ROS)‐producing phagocyte NADPH oxidase NOX2 is called chronic granulomatous disease (CGD). CGD is among the most common primary immune deficiencies. Here we review our knowledge on the importance of NOX2‐derived ROS in mycobacterial infection. A literature review suggests that human CGD patient frequently have an increased susceptibility to BCG and to M. tuberculosis. In vitro studies and experiments with CGD mice are incomplete and yielded – at least in part – contradictory results. Thus, although observations in human CGD patients leave little doubt about the role of NOX2 in the control of mycobacteria, further studies will be necessary to unequivocally define and understand the role of ROS.  相似文献   

13.
Given the importance of Jak2 in cell signaling, a critical role for Jak2 in immune cells especially dendritic cells (DCs) has long been proposed. The exact function for Jak2 in DCs, however, remained poorly understood as Jak2 deficiency leads to embryonic lethality. Here we established Jak2 deficiency in adult Cre+/+Jak2fl/fl mice by tamoxifen induction. Loss of Jak2 significantly impaired DC development as manifested by reduced BMDC yield, smaller spleen size and reduced percentage of DCs in total splenocytes. Jak2 was also crucial for the capacity of DCs to mediate innate immune response. Jak2−/− DCs were less potent in response to inflammatory stimuli and showed reduced capacity to secrete proinflammatory cytokines such as TNFα and IL-12. As a result, Jak2−/− mice were defective for the early clearance of Listeria after infection. However, their potency to mediate adaptive immune response was not affected. Unlike DCs, Jak2−/− macrophages showed similar capacity secretion of proinflammatory cytokines, suggesting that Jak2 selectively modulates innate immune response in a DC-dependent manner. Consistent with these results, Jak2−/− mice were remarkably resistant to lethal dose of LPS-induced septic shock, a deadly sepsis characterized by the excessive innate immune response, and adoptive transfer of normal DCs restored their susceptibility to LPS-induced septic shock. Mechanistic studies revealed that Jak2/SATA5 signaling is pivotal for DC development and maturation, while the capacity for DCs secretion of proinflammatory cytokines is regulated by both Jak2/STAT5 and Jak2/STAT6 signaling.  相似文献   

14.
15.
Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. Interferon-γ was found to increase expression of the high affinity copper importer, CTR1, and stimulate copper uptake. This was accompanied by copper-stimulated trafficking of the ATP7A copper exporter from the Golgi to vesicles that partially overlapped with phagosomal compartments. Silencing of ATP7A expression attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of macrophages. Significantly, a copper-sensitive mutant of Escherichia coli lacking the CopA copper-transporting ATPase was hypersensitive to killing by RAW264.7 macrophages, and this phenotype was dependent on ATP7A expression. Collectively, these data suggest that copper-transporting ATPases, CopA and ATP7A, in both bacteria and macrophage are unique determinants of bacteria survival and identify an unexpected role for copper at the host-pathogen interface.  相似文献   

16.
Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.  相似文献   

17.
Artemisone was evaluated, in in vitro and in vivo, for control of bovine babesiosis caused by Babesia bigemina and Babesiabovis parasites. In vitro, artemisone reduced parasitemia in a dose-dependent manner: the inhibitory effects increased gradually, reaching a maximum inhibition of 99.6% and 86.4% for B. bigemina and B. bovis, respectively 72 h after initiation of treatment with initial parasitemia of 0.5%. In calves infected with either B. bigemina or B. bovis artemisone treatment was well tolerated and prevented development of acute babesiosis in all animals except for one B. bovis-infected calf. The treatment did not eliminate all blood parasites, and recovered animals carried a persistent low-level infection. Treatment with artemisone may be useful as an alternative drug for preventing the pathology that results from babesiosis, without interfering with acquired immune protection following recovery from an acute babesiosis infection or vaccination.  相似文献   

18.
Zinc (Zn) and copper (Cu) are essential for optimal innate immune function, and nutritional deficiency in either metal leads to increased susceptibility to bacterial infection. Recently, the decreased survival of bacterial pathogens with impaired Cu and/or Zn detoxification systems in phagocytes and animal models of infection has been reported. Consequently, a model has emerged in which the host utilizes Cu and/or Zn intoxication to reduce the intracellular survival of pathogens. This review describes and assesses the potential role for Cu and Zn intoxication in innate immune function and their direct bactericidal function.  相似文献   

19.
Diabetes has been associated with an increased risk of developing tuberculosis. The reasons related to the increased susceptibility to develop TB in type 2 diabetes mellitus (T2DM) individuals, has not been completely elucidated. However, this susceptibility has been attributed to several factors including failures and misfunctioning of the immune system. In the present study, we aimed to determine the role of anti-hyperglycemic drugs such as glyburide, insulin, and metformin to promote the killing of mycobacteria through the regulation of innate immune molecules such as host defense peptides (HDP) in lung epithelial cells and macrophages. Our results showed that metformin reduces bacillary loads in macrophages and lung epithelial cells which correlates with higher production of β-defensin-2, -3 and -4. Since β-defensins are crucial molecules for controlling Mycobacterium tuberculosis growth, the present results suggest that the use of metformin would be the first choice in the treatment for T2DM2, in patients within tuberculosis-endemic areas.  相似文献   

20.
Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号