首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysA gene encodes meso-diaminopimelate (DAP) decarboxylase (E.C.4.1.1.20), the last enzyme of the lysine biosynthetic pathway in bacteria. We have determined the nucleotide sequence of the lysA gene from Pseudomonas aeruginosa. Comparison of the deduced amino acid sequence of the lysA gene product revealed extensive similarity with the sequences of the functionally equivalent enzymes from Escherichia coli and Corynebacterium glutamicum. Even though both P. aeruginosa and E. coli are Gram-negative bacteria, sequence comparisons indicate a greater similarity between enzymes of P. aeruginosa and the Gram- positive bacterium C. glutamicum than between those of P. aeruginosa and E. coli enzymes. Comparison of DAP decarboxylase with protein sequences present in data bases revealed that bacterial DAP decarboxylases are homologous to mouse (Mus musculus) ornithine decarboxylase (E.C.4.1.1.17), the key enzyme in polyamine biosynthesis in mammals. On the other hand, no similarity was detected between DAP decarboxylases and other bacterial amino acid decarboxylases.   相似文献   

2.

Background  

Identification of novel drug targets and their inhibitors is a major challenge in the field of drug designing and development. Diaminopimelic acid (DAP) pathway is a unique lysine biosynthetic pathway present in bacteria, however absent in mammals. This pathway is vital for bacteria due to its critical role in cell wall biosynthesis. One of the essential enzymes of this pathway is dihydrodipicolinate synthase (DHDPS), considered to be crucial for the bacterial survival. In view of its importance, the development and prediction of potent inhibitors against DHDPS may be valuable to design effective drugs against bacteria, in general.  相似文献   

3.
Lysine biosynthetic pathway enzymes of Bacillus brevis ATCC 1068 were studied as a function of stage of development (growth and sporulation). The synthesis of aspartic-2-eemialdehyde dehydrogenase (ASA-dehydrogenase), dihydrodipicolinate synthase (DHDPA-synthase), DHPA-reductase and diaminopimelate decarboxylase (DAP-decarboxylase) was found not to be co-regulated, since lysine was not a co-repressor for these enzymes. Unlike the aspartokinase isoenzymes, the other enzymes of the lysine pathway were not derepressed in thiosine-resistant, lysine-excreting mutants. Thus, the aspartokinase isoenzymes were the key enzymes during growth and regulation of lysine biosynthesis through restriction of l-ASA synthesis via feedback control by lysine on the aspartokinases was therefore suggested.In contrast to other Bacillus species, the levels of the lysine biosynthetic pathway enzymes of strain ATCC 10068 were not derepressed during the change from vegetative growth to sporulation. Two control mechanisms, enabling the observed preferential channelling of carbon for the synthesis of spore-specific diaminopimelic acid (DAP) and dipicolinic acid (DPA) were a) loss of DAP-decarboxylase, b) inhibition of DHDPA-reductase by DPA. Increase in the level of the DAP pool during sporulation, as a consequence of the loss of DAP-decarboxylase, and its relevance to the non-enzymatic formation of DPA has been discussed.Abbreviations l-ASA l-aspartic-2-semialdehyde - DAP diaminopimelic acid - DPA dipicolinic acid - DHDPA dihydrodipicolinate - AGM aspargine-glycerol medium - PY peptone-yeast extract - NB+NSM nutrient broth plus nutrient sporulation medium  相似文献   

4.
Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.  相似文献   

5.
Bacterial peptidoglycan is the cell wall component responsible for various biological activities. Its cytoplasmic precursor UDP-N-acetylmuramyl pentapeptide is biosynthesized by the first six enzymes of peptidoglycan synthetic pathways (Mur enzymes), which are all proved to be important targets for antibiotic screening. In our present work, the genes encoding Mur enzymes from Escherichia coli were co-expressed in the cell-free protein synthesis (CFPS) system, and the activities of Mur enzymes derived from CFPS system were validated by the synthesis of the final product UDP-N-acetylmuramyl pentapeptide. Then this in vitro reconstituted Mur biosynthetic pathway was used to screen a panel of specific antisense oligonucleotides for MurA and MurB. The selected oligonucleotides were proved to eliminate the expression of Mur enzymes, and thus inhibit the Mur biosynthetic pathway. The present work not only developed a rapid method to reconstruct and regulate a biosynthetic pathway in vitro, but also may provide insight into the development of novel antibiotics targeting on peptidoglycan biosynthetic pathway.  相似文献   

6.
The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.  相似文献   

7.
Extracts from Chlamydomonas, corn, soybean and tobacco were tested for enzymes of the lysine biosynthetic pathway. Dihydrodipicolinic acid (DHD) synthase, DHD reductase, diaminopimelate (DAP) epimerase and DAP decarboxylase were present in all. However, in contrast to the report of Wenko et al., meso-DAP dehydrogenase could not be detected in extracts prepared from soybean. Moreover, it was not found in Chlamydomonas, corn and tobacco as well. In order to set an upper limit to the amount of meso-DAP dehydrogenase that might be present, reconstruction experiments were performed with soybean and corn extracts in which the conversion of dihydrodipicolinate to lysine was made dependent on the addition of limited amounts of the meso-DAP dehydrogenase purified from Bacillus sphaericus. The presence of DAP epimerase and the absence of meso-DAP dehydrogenase indicates that the meso-DAP dehydrogenase abbreviated pathway for lysine synthesis is not operative in plants.  相似文献   

8.
Polyamine metabolism and cancer   总被引:7,自引:0,他引:7  
Polyamines are aliphatic cations present in all cells. In normal cells, polyamine levels are intricately controlled by biosynthetic and catabolic enzymes. The biosynthetic enzymes are ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, and spermine synthase. The catabolic enzymes include spermidine/spermine acetyltransferase, flavin containing polyamine oxidase, copper containing diamine oxidase, and possibly other amine oxidases. Multiple abnormalities in the control of polyamine metabolism and uptake might be responsible for increased levels of polyamines in cancer cells as compared to that of normal cells. This review is designed to look at the current research in polyamine biosynthesis, catabolism, and transport pathways, enumerate the functions of polyamines, and assess the potential for using polyamine metabolism or function as targets for cancer therapy.  相似文献   

9.
10.
Customizing biosynthesis of natural products to yield biologically active derivatives has captivated scientists in the field of biosynthetic research. To substantiate this goal, there are scores of obstacles to consider. To create novel metabolites by mutating amino acid residues in wild-type enzymes, a researcher must broaden the range of the enzymes substrate tolerance and increase its turnover rate during reaction catalysis. In the past decade, numerous gene clusters responsible for the biosynthesis of notable natural products have been identified from a variety of organisms. Several genes coding for type III polyketide synthases, particularly the chalcone synthase superfamily enzymes, were recently uncovered and expressed in E. coli. Furthermore, it was observed and reported how these recombinant enzymes are capable of producing essential metabolites in vitro. Three of the type III polyketide synthases, chalcone synthase, octaketide synthase and pentaketide chromone synthase, have been characterized and their active sites subjected to rational engineering for biosynthetic production of their analogs. Because they are encoded in a single open reading frame and are post-translationally small in size, type III polyketide synthases are ideal targets for protein engineering. The relative ease with which these genes are expressed makes molecular biological manipulation to obtain mutated enzymes more procurable, ameliorating analysis of its biosynthetic pathway. In summary, time devoted to modification of biosynthetic proteins and unravelling of the detailed reaction mechanisms involved in biosynthesis will be shortened, paving the way for a much wider scope for metabolic engineers in future. This review focuses on the use of chalcone synthase, octaketide synthase and pentaketide chromone synthase for rational biosynthetic engineering to generate molecular diversity and pursue innovative, biologically potent compounds.  相似文献   

11.
NAD is not only an important cofactor in redox reactions but has also received attention in recent years because of its physiological importance in metabolic regulation, DNA repair and signaling. In contrast to the redox reactions, these regulatory processes involve degradation of NAD and therefore necessitate a constant replenishment of its cellular pool. NAD biosynthetic enzymes are common to almost all species in all clades, but the number of NAD degrading enzymes varies substantially across taxa. In particular, vertebrates, including humans, have a manifold of NAD degrading enzymes which require a high turnover of NAD. As there is currently a lack of a systematic study of how natural selection has shaped enzymes involved in NAD metabolism we conducted a comprehensive evolutionary analysis based on intraspecific variation and interspecific divergence. We compare NAD biosynthetic and degrading enzymes in four eukaryotic model species and subsequently focus on human NAD metabolic enzymes and their orthologs in other vertebrates. We find that the majority of enzymes involved in NAD metabolism are subject to varying levels of purifying selection. While NAD biosynthetic enzymes appear to experience a rather high level of evolutionary constraint, there is evidence for positive selection among enzymes mediating NAD-dependent signaling. This is particularly evident for members of the PARP family, a diverse protein family involved in DNA damage repair and programmed cell death. Based on haplotype information and substitution rate analysis we pinpoint sites that are potential targets of positive selection. We also link our findings to a three dimensional structure, which suggests that positive selection occurs in domains responsible for DNA binding and polymerization rather than the NAD catalytic domain. Taken together, our results indicate that vertebrate NAD metabolism is still undergoing functional diversification.  相似文献   

12.
In efforts to develop new antitubercular agents, we report here the synthesis of a series of novel pyrrole hydrazine derivatives. The molecules were evaluated against inhibitors of InhA, which is one of the key enzymes involved in type II fatty acid biosynthetic pathway of the mycobacterial cell wall as well as inhibitors of Mycobacterium tuberculosis H37Rv. The binding mode of compounds at the active site of enoyl-ACP reductase was explored using the surflex-docking method. The model suggests one or two H-bonding interactions between the compounds and the InhA enzyme. Some compounds exhibited good activities against InhA in addition to promising activities against M. tuberculosis.  相似文献   

13.
Mycobacterial peptidoglycan contains L-alanyl-D-iso-glutaminyl-meso-diaminopimelyl-D-alanyl-D-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the L-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate D-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to beta-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine beta-synthase, an enzyme that is a part of the cysteine biosynthetic pathway.  相似文献   

14.
A sensitive and comparatively simple method for the assay of diaminopimelate (DAP) decarboxylase, which simultaneously monitors DAP epimerase activity, in the reverse of the biosynthetic direction, is described. The substrate, meso-DAP and products LL-DAP and L-lysine are derivatized with o-phthaldialdehyde and resolved by reversed-phase high-performance liquid chromatography. Separation is achieved on a Spherisorb C18 column using a gradient elution system. This technique offers a high degree of sensitivity as the detection method described can measure picomole quantities of substrate and products.  相似文献   

15.
Yen M  Yin J 《BioTechniques》2007,43(1):31, 33, 35 passim
Phage display has been used as a high-throughput platform for identifying proteins or peptides with desired binding or catalytic activities from a complex proteome. Recently, phage display has been applied to profile the catalytic activities of posttranslational modification (PTM) enzymes. Here, we highlight recent work elucidating the downstream targets of PTM enzymes by phage display, including the genome-wide profiling of biosynthetic enzymes subject to phosphopantetheinyl transferase (PPTase) modification.  相似文献   

16.
The cell wall component lipoarabinomannan (ManLAM) from Mycobacterium tuberculosis is involved in the inhibition of phagosome maturation, apoptosis and interferon (IFN)-gamma signalling in macrophages and interleukin (IL)-12 cytokine secretion of dendritic cells (DC). All these processes are important for the host to mount an efficient immune response. Conversely, LAM isolated from non-pathogenic mycobacteria (PILAM) have the opposite effect, by inducing a potent proinflammatory response in macrophages and DCs. LAMs from diverse mycobacterial species differ in the modification of their terminal arabinose residues. The strong proinflammatory response induced by PILAM correlates with the presence of phospho-myo-inositol on the terminal arabinose. Interestingly, recent work indicates that the biosynthetic precursor of LAM, lipomannan (LM), which is also present in the cell wall, displays strong proinflammatory effects, independently of which mycobacterial species it is isolated from. Results from in vitro assays and knock-out mice suggest that LM, like PILAM, mediates its biological activity via Toll-like receptor 2. We hypothesize that the LAM/LM ratio might be a crucial factor in determining the virulence of a mycobacterial species and the outcome of the infection. Recent progress in the identification of genes involved in the biosynthesis of LAM is discussed, in particular with respect to the fact that enzymes controlling the LAM/LM balance might represent targets for new antitubercular drugs. In addition, inactivation of these genes may lead to attenuated strains of M. tuberculosis for the development of new vaccine candidates.  相似文献   

17.
Bacterial biosynthesis of lysine has come under increased scrutiny as a target for novel antibacterial agents as it provides lysine for protein synthesis and both lysine and meso-diaminopimelate for construction of the bacterial peptidoglycan cell wall. In this Highlight article we review recent advances in the validation of antibiotic targets, studies of the enzymes of the lysine biosynthetic pathway and development of inhibitors of these enzymes.  相似文献   

18.
Leprosy is an infectious disease caused by Mycobacterium leprae. M. leprae has undergone a major reductive evolution leaving a minimal set of functional genes for survival. It remains non-cultivable. As M. leprae develops resistance against most of the drugs, novel drug targets are required in order to design new drugs. As most of the essential genes mediate several biosynthetic and metabolic pathways, the pathway predictions can predict essential genes. We used comparative genome analysis of metabolic enzymes in M. leprae and H. sapiens using KEGG pathway database and identified 179 non-homologues enzymes. On further comparison of these 179 non-homologous enzymes to the list of minimal set of 48 essential genes required for cell-wall biosynthesis of M. leprae reveals eight common enzymes. Interestingly, six of these eight common enzymes map to that of peptidoglycan biosynthesis and they all belong to Mur enzymes. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy and thus targeting these enzymes is a step towards facilitating the search for new antibiotics.  相似文献   

19.
Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1) is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP). Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics.  相似文献   

20.
L-Rhamnose is a deoxy sugar found widely in bacteria and plants. Evidence continues to emerge about its essential role in many pathogenic bacteria. The crystal structures of two of the four enzymes involved in its biosynthetic pathway have been reported and the other two have been submitted for publication. This pathway does not exist in humans, making enzymes of this pathway very attractive targets for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号