首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional analysis of bioprosthetic heart valves   总被引:2,自引:0,他引:2  
Glutaraldehyde-treated bovine pericardium is used successfully as bioprosthetic material in the manufacturing of heart valves leaflets. The mechanical properties of bovine pericardial aortic valve leaflets seem to influence its mechanical behaviour and the failure mechanisms. In this study the effect of orthotropy on tricuspid bioprosthetic aortic valve was analysed, using a three-dimensional finite element model, during the entire cardiac cycle. Multiaxial tensile tests were also performed to determine the anisotropy of pericardium. Seven different models of the same valve were analysed using different values of mechanical characteristics from one leaflet to another, considering pericardium as an orthotropic material. The results showed that even a small difference between values along the two axes of orthotropy can negatively influence leaflets performance as regard both displacement and stress distribution. Leaflets of bovine pericardium bioprostheses could be manufactured to be similar to natural human heart valves reproducing their well-known anisotropy. In this way it could be possible to improve the manufacturing process, durability and function of pericardial bioprosthetic valves.  相似文献   

2.
Bovine pericardium, stabilized with glutaraldehyde, is used widely in the construction of heart valve substitutes, but the design and construction of valve substitutes from this material are empirically based. Collagenous tissue can support tension, but experimental evidence indicates that flexure-induced compressive stresses can lead to fatigue failure. This study uses experimental results obtained from cyclic uniaxial load tests to predict the type and magnitude of operational stresses which occur in pericardial heterograft leaflets. Both Young's modulus and Poisson's ratio varied with uniaxial loading in pericardium, chemically modified free of tension. Leaflet stresses were analysed by using effective incremental representations of these parameters. In leaflets with unrestricted rotation at the point of attachment to the stent, the mid-plane tensions always exceeded the bending stresses, and no zones of leaflet compression were predicted. In contrast, with totally restricted leaflet rotation induced by clamping (possibly between a male and female frame) the bending stresses were greater than the mid-plane tensions at the hinge line and significant compressive stresses were predicted at this site. If elastic boundary conditions were introduced at the stent (possibly by wrapping the stent in pericardium) then the compressive stresses were reduced as the degree of elasticity was increased. Glutaraldehyde fixation of the pericardium under load produced a stiffer material; higher compressive stresses at the stent and significant increases in total stress were predicted for this tissue. The application of elevated pressure loading also increased the compressive and total stresses in the leaflet. Finally, it was shown that bicuspid leaflets were likely to experience higher stresses than tricuspid leaflets. This simple stress analysis should help valve designers of pericardial heterografts to identify those conditions which lead to tissue compression, high total stress, and ultimately material fatigue.  相似文献   

3.
While providing nearly trouble-free function for 10-12 years, current bioprosthetic heart valves (BHV) continue to suffer from limited long-term durability. This is usually a result of leaflet calcification and/or structural degeneration, which may be related to regions of stress concentration associated with complex leaflet deformations. In the current work, a dynamic three-dimensional finite element analysis of a pericardial BHV was performed with a recently developed FE implementation of the generalized nonlinear anisotropic Fung-type elastic constitutive model for pericardial BHV tissues (W. Sun and M.S. Sacks, 2005, [Biomech. Model. Mechanobiol., 4(2-3), pp. 190-199]). The pericardial BHV was subjected to time-varying physiological pressure loading to compute the deformation and stress distribution during the opening phase of the valve function. A dynamic sequence of the displacements revealed that the free edge of the leaflet reached the fully open position earlier and the belly region followed. Asymmetry was observed in the resulting displacement and stress distribution due to the fiber direction and the anisotropic characteristics of the Fung-type elastic constitutive material model. The computed stress distribution indicated relatively high magnitudes near the free edge of the leaflet with local bending deformation and subsequently at the leaflet attachment boundary. The maximum computed von Mises stress during the opening phase was 33.8 kPa. The dynamic analysis indicated that the free edge regions of the leaflets were subjected to significant flexural deformation that may potentially lead to structural degeneration after millions of cycles of valve function. The regions subjected to time varying flexural deformation and high stresses of the present study also correspond to regions of tissue valve calcification and structural failure reported from explanted valves. In addition, the present simulation also demonstrated the importance of including the bending component together with the in-plane material behavior of the leaflets towards physiologically realistic deformation of the leaflets. Dynamic simulations with experimentally determined leaflet material specification can be potentially used to modify the valve towards an optimal design to minimize regions of stress concentration and structural failure.  相似文献   

4.
ObjectiveTricuspid valve reconstruction using a small intestinal submucosal porcine extracellular matrix (ECM) tube graft is hypothesized to be durable for six months and show signs of recellularization and growth potential. The purpose was to histologically and biomechanically test ECM valves before and after six months of implantation in pigs for comparison with native valves.MethodsTen 60 kg pigs were included, which survived tricuspid valve tube graft insertion. Anterior and septal tricuspid leaflets were explanted from all animals surviving more than one month and examined histologically (n = 9). Endothelialization, collagen content, mineralization, neovascularization, burst strength and tensile strength were determined for native valves (n = 5), ECM before implantation (n = 5), and ECM after six months (n = 5).ResultsCollagen density was significantly larger in ECM at implantation (baseline) compared to native leaflet tissue (0.3 ± 0.02 mg/mm3 vs. 0.1 ± 0.03 mg/mm3, p < .0001), but collagen density decreased and reached native leaflet collagen content, six months after ECM implantation (native vs. ECM valve at six months: 0.1 ± 0.03 mg/mm3 vs. 0.2 ± 0.05 mg/mm3, p = .8).Histologically, ECM valves showed endothelialization, host cell infiltration and structural collagen organization together with elastin generation after six months, indicating tissue remodeling and -engineering together with gradual development of a close-to-native leaflet structure without foreign body response.ConclusionsECM tricuspid tube grafts were stronger than native leaflet tissue. Histologically, the acellular ECM tube grafts showed evidence of constructive tissue remodeling with endothelialization and connective tissue organization. These findings support the concept of tissue engineering and recellularization, which are prerequisites for growth.  相似文献   

5.
We carry out three-dimensional high-resolution numerical simulations of a bileaflet mechanical heart valve under physiologic pulsatile flow conditions implanted at different orientations in an anatomic aorta obtained from magnetic resonance imaging (MRI) of a volunteer. We use the extensively validated for heart valve flow curvilinear-immersed boundary (CURVIB) fluid-structure interaction (FSI) solver in which the empty aorta is discretized with a curvilinear, aorta-conforming grid while the valve is handled as an immersed boundary. The motion of the valve leaflets are calculated through a strongly coupled FSI algorithm implemented in conjunction with the Aitken convergence acceleration technique. We perform simulations for three valve orientations, which differ from each other by 45 deg and compare the results in terms of leaflet motion and flow field. We show that the valve implanted symmetrically relative to the symmetry plane of the ascending aorta curvature exhibits the smallest overall asymmetry in the motion of its two leaflets and lowest rebound during closure. Consequently, we hypothesize that this orientation is beneficial to reduce the chance of intermittent regurgitation. Furthermore, we find that the valve orientation does not significantly affect the shear stress distribution in the aortic lumen, which is in agreement with previous studies.  相似文献   

6.
Current artificial heart valves either have limited lifespan or require the recipient to be on permanent anticoagulation therapy. In this paper, effort is made to assess a newly developed bileaflet valve prosthesis made of synthetic flexible leaflet materials, whose geometry and material properties are based on those of the native mitral valve, with a view to providing superior options for mitral valve replacement. Computational analysis is employed to evaluate the geometric and material design of the valve, by investigation of its mechanical behaviour and unsteady flow characteristics. The immersed boundary (IB) method is used for the dynamic modelling of the large deformation of the valve leaflets and the fluid-structure interactions. The IB simulation is first validated for the aortic prosthesis subjected to a hydrostatic loading. The predicted displacement fields by IB are compared with those obtained using ANSYS, as well as with experimental measurements. Good quantitative agreement is obtained. Moreover, known failure regions of aortic prostheses are identified. The dynamic behaviour of the valve designs is then simulated under four physiological pulsatile flows. Experimental pressure gradients for opening and closure of the valves are in good agreement with IB predictions for all flow rates for both aortic and mitral designs. Importantly, the simulations predicted improved physiological haemodynamics for the novel mitral design. Limitation of the current IB model is also discussed. We conclude that the IB model can be developed to be an extremely effective dynamic simulation tool to aid prosthesis design.  相似文献   

7.
Stresses in the closed mitral valve: a model study   总被引:2,自引:1,他引:1  
In the present model study on the closed mitral valve, tensile force in the chordae tendineae is related to transvalvular pressure using a mathematical model of mechanics of the closed mitral valve. Circumferential stress as well as bending stress in the valve leaflets were neglected. Without precisely knowing the mechanical properties of the leaflet material, geometry of the leaflets was estimated by applying Laplace's law, which relates leaflet stress to leaflet curvature. Independent of shape of the mitral valve orifice, under all circumstances tensile force in the chordae tendineae was calculated to be equal or greater than half the force exerted on the mitral valve orifice by the transvalvular pressure.  相似文献   

8.
The bicuspid aortic valve (BAV) is associated with a high prevalence of calcific aortic valve disease (CAVD). Although abnormal hemodynamics has been proposed as a potential pathogenic contributor, the native BAV hemodynamic stresses remain largely unknown. Fluid-structure interaction models were designed to quantify the regional BAV leaflet wall-shear stress over the course of CAVD. Systolic flow and leaflet dynamics were computed in two-dimensional tricuspid aortic valve (TAV) and type-1 BAV geometries with different degree of asymmetry (10 and 16% eccentricity) using an arbitrary Lagrangian–Eulerian approach. Valvular performance and regional leaflet wallshear stress were quantified in terms of valve effective orifice area (EOA), oscillatory shear index (OSI) and temporal shear magnitude (TSM). The dependence of those characteristics on the degree of leaflet calcification was also investigated. The models predicted an average reduction of 49% in BAV peak-systolic EOA relative to the TAV. Regardless of the anatomy, the leaflet wall-shear stress was side-specific and characterized by high magnitude and pulsatility on the ventricularis and low magnitude and oscillations on the fibrosa. While the TAV and non-coronary BAV leaflets shared similar shear stress characteristics, the base of the fused BAV leaflet fibrosa exhibited strong abnormalities, which were modulated by the degree of calcification (6-fold, 10-fold and 16-fold TSM increase in the normal, mildly and severely calcified BAV, respectively, relative to the normal TAV). This study reveals the existence of major differences in wall-shear stress pulsatility and magnitude on TAV and BAV leaflets. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, the results support the existence of a mechano-etiology of CAVD in the BAV.  相似文献   

9.
Mitral annular (MA) and leaflet three-dimensional (3-D) dynamics were examined after circumferential phenol ablation of the MA and anterior mitral leaflet (AML) muscle. Radiopaque markers were sutured to the left ventricle, MA, and both mitral leaflets in 18 sheep. In 10 sheep, phenol was applied circumferentially to the atrial surface of the mitral annulus and the hinge region of the AML, whereas 8 sheep served as controls. Animals were studied with biplane video fluoroscopy for computation of 3-D mitral annular area (MAA) and leaflet shape. MAA contraction (MAACont) was determined from maximum to minimum value. Presystolic MAA (PS-MAACont) reduction was calculated as the percentage of total reduction occurring before end diastole. Phenol ablation decreased PS-MAACont (72 +/- 6 vs. 47 +/- 31%, P = 0.04) and delayed valve closure (31 +/- 11 vs. 57 +/- 25 ms, P = 0.017). In control, the AML had a compound sigmoid shape; after phenol, this shape was entirely concave to the atrium during valve closure. These data indicate that myocardial fibers on the atrial side of the valve influence the 3-D dynamic geometry and shape of the MA and AML.  相似文献   

10.
One of the major failure modes of bioprosthetic heart valves (BHVs) is noncalcific structural deterioration due to fatigue of the tissue leaflets; yet, the mechanisms of fatigue are not well understood. BHV durability is primarily assessed based on visual inspection of the leaflets following accelerated wear testing. In this study, we developed a computational framework to simulate BHV leaflet fatigue, which is both efficient and quantitative, making it an attractive alternative to traditional accelerated wear testing. We utilize a phenomenological soft tissue fatigue damage model developed previously to describe the stress softening and permanent set of the glutaraldehyde-treated bovine pericardium leaflets in BHVs subjected to cyclic loading. A parametric study was conducted to determine the effects of altered leaflet and stent elastic properties on the fatigue of the leaflets. The simulation results show that heterogeneity of the leaflet elastic properties, poor leaflet coaptation, and little stent-tip deflection may accelerate leaflet fatigue, which agrees with clinical findings. Therefore, the developed framework may be an invaluable tool for evaluating leaflet durability in new tissue valve designs, including traditional BHVs as well as new transcatheter valves.  相似文献   

11.
A numerical simulation of mechanical heart valve closure fluid dynamics   总被引:6,自引:0,他引:6  
A computational fluid dynamics model for the analysis of the bileaflet mechanical heart valve closure process is presented. The objective of the study is to demonstrate the ability of the numerical model to simulate the leaflet motion during the closing phase in order to investigate the closure fluid dynamics and to evaluate the effect of alterations in the leaflet tip geometry. The model has been applied to six different combinations of the leaflet tip geometry and the gap width between the leaflet tip and the housing. The results show that the negative pressure quickly develops on the atrial side of the leaflet tip. The pressure becomes more negative as the leaflet closure progresses and the lowest pressure is reached before the leaflet comes to a stop in the closed position. The flow dynamics at the instant of valve closure is strongly dependent on the leaflet velocity during the closing phase. Decrease of the tip velocity by a factor of three in the last four degrees of leaflet motion leads to a 50% reduction in the negative pressure magnitude.  相似文献   

12.
Stresses in a prosthetic heart valve at closure are determined by its geometrical and structural characteristics, by the mechanical support environment, and by the momentum of the valve leaflets or occluder and of the blood at the instant of closure. The mass of blood to be arrested is significantly greater than that of the leaflets or occluder, and is therefore likely to dominate the closure impulse. The kinetic energy of the blood must be transduced into potential energy in the structural components (valve leaflets, aortic root and aorta). This paper presents a methodology for computation and parameterisation of the blood momentum associated with a valve in the aortic position. It is suggested that the influence of physiological parameters, such as systolic waveform and systemic impedance, on the closure characteristics can be investigated based on the fluid dynamic implications. Detailed results are presented for a single leaflet mechanical valve (Bjork-Shiley 60 degrees Convexo-Concave). It is demonstrated that a simple analytical method can yield results that might be adequate for the purposes of valve design.  相似文献   

13.
Echocardiograms of 30 patients with a normally functioning Ionescu-Shiley pericardial xenograft valve in the aortic position were analyzed to delineate the ultrasonic patterns produced by this bioprosthesis. The pericardial leaflets were recorded as thin, discrete echoes that were similar in configuration to the native aortic valve. Maximum systolic excursion of the anterior and posterior leaflets was 19 +/- 0.22 mm (standard deviation.) The presence of multiple echoes produced by the titanium frame was the major technical limitation to echocardiographic imaging of valve motion.  相似文献   

14.
Tissue engineering lamb heart valve leaflets   总被引:12,自引:0,他引:12  
Tissue engineered lamb heart valve leaflets (N - 3) were constructed by repeatedly seeding a concentrated suspension of autologous myofibroblasts onto a biodegradable synthetic polymeric scaffold composed of fibers made from polyglycolic acid and polylactic acid. Over a 2-week period the cells attached to the polymer fibers, multiplied, and formed a tissue core in the shape of the matrix. The tissue core was seeded with autologous large-vessel endothelial cells that formed a monolayer which coated the outer surface of the leaflet. The tissue engineered leaflets were surgically implanted in place of the right posterior pulmonary valve leaflet of the donor lamb while on cardiopulmonary bypass. Pulmonary valve function was evaluated by two-dimensional echocardiography with color Doppler which demonstrated valve function without evidence of stenosis and with only trivial regurgitation under normal physiologic conditions. Histologically, the tissue engineered heart valve leaflets resembled native valve leaflet tissue. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
A patient with severe aortic insufficiency due to fenestration of the non-coronary aortic valve leaflet is described. A preoperative echocardiogram demonstrated early closure of the mitral valve and early diastolic separation of the aortic valve leaflets. These findings disappeared after partial surgical correction and subsequent hemodynamic improvement. Premature opening of the aortic valve is common in severe aortic insufficiency.  相似文献   

16.
Motion and position of both mitral leaflets were studied in five normal dogs 1-11 wk after radiopaque markers were sutured on the valve cusps and on the mitral annulus. Cinefluorograms and cineangiograms (100-120 frames/s) of left atrium and left ventricle were used to study cusp motion and intraventricular flow patterns, and to detect mitral regurgitation during sinus rhythm (42-184 beats/min) and during isolated atrial or ventricular contractions. Time-motion of both leaflets was similar throughout diastole with the exception of delayed posterior cusp opening. Peak opening and closing speeds, opening and closing times, and time of complete closure, measured from the Q wave of the ECG, were not significantly affected by the variations in heart rate. Diastolic leaflet closure began immediately after opening, while the ventricular cavity was small, and was caused by flow eddies behind the cusps. Isolated ventricular contractions closed the valve leaflets completely and symmetric valve closure was ensured by the different rates of leaflet edge approximation. In contrast, atrial closure was slow, partial, and of very short duration.  相似文献   

17.
The bicuspid aortic valve (BAV) is a common congenital malformation of the aortic valve (AV) affecting 1% to 2% of the population. The BAV is predisposed to early degenerative calcification of valve leaflets, and BAV patients constitute 50% of AV stenosis patients. Although evidence shows that genetic defects can play a role in calcification of the BAV leaflets, we hypothesize that drastic changes in the mechanical environment of the BAV elicit pathological responses from the valve and might be concurrently responsible for early calcification. An in vitro model of the BAV was constructed by surgically manipulating a native trileaflet porcine AV. The BAV valve model and a trileaflet AV (TAV) model were tested in an in vitro pulsatile flow loop mimicking physiological hemodynamics. Laser Doppler velocimetry was used to make measurements of fluid shear stresses on the leaflet of the valve models using previously established methodologies. Furthermore, particle image velocimetry was used to visualize the flow fields downstream of the valves and in the sinuses. In the BAV model, flow near the leaflets and fluid shear stresses on the leaflets were much more unsteady than for the TAV model, most likely due to the moderate stenosis in the BAV and the skewed forward flow jet that collided with the aorta wall. This additional unsteadiness occurred during mid- to late-systole and was composed of cycle-to-cycle magnitude variability as well as high-frequency fluctuations about the mean shear stress. It has been demonstrated that the BAV geometry can lead to unsteady shear stresses under physiological flow and pressure conditions. Such altered shear stresses could play a role in accelerated calcification in BAVs.  相似文献   

18.
19.
In aortic valve sparing surgery, cusp prolapse is a common cause of residual aortic insufficiency. To correct cusp pathology, native leaflets of the valve frequently require adjustment which can be performed using a variety of described correction techniques, such as central or commissural plication, or resuspension of the leaflet free margin. The practical question then arises of determining which surgical technique provides the best valve performance with the most physiologic coaptation. To answer this question, we created a new finite element model with the ability to simulate physiologic function in normal valves, and aortic insufficiency due to leaflet prolapse in asymmetric, diseased or sub-optimally repaired valves. The existing leaflet correction techniques were simulated in a controlled situation, and the performance of the repaired valve was quantified in terms of maximum leaflets stress, valve orifice area, valve opening and closing characteristics as well as total coaptation area in diastole. On the one hand, the existing leaflet correction techniques were shown not to adversely affect the dynamic properties of the repaired valves. On the other hand, leaflet resuspension appeared as the best technique compared to central or commissural leaflet plication. It was the only method able to achieve symmetric competence and fix an individual leaflet prolapse while simultaneously restoring normal values for mechanical stress, valve orifice area and coaptation area.  相似文献   

20.
A finite element model of a bioprosthetic heart valve was developed to determine the influence of the stent height on leaflet stresses under various pressure loading conditions after valve closure. A nonlinear solution was used to obtain the stresses in the leaflets for stent heights of 14.6 mm, 19.0 mm and 22.0 mm respectively. The basic assumptions included an elliptic-paraboloid for a relaxed leaflet shape, a rigid stent, isotropic leaflet material property with a Poisson's ratio of 0.45, a uniform leaflet thickness and a stress dependent Young's modulus. The model predicted an increase of stresses on the closed leaflets as the stent height was reduced. This observation appears to mitigate, to some extent, the hemodynamic benefits thought to accompany the reduction of stent height of bioprosthetic valves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号