首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid‐ and vapour‐phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one‐third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid‐ and vapour‐phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD.  相似文献   

2.
The hydraulic conductance of the leaf lamina (Klamina) substantially constrains whole‐plant water transport, but little is known of its association with leaf structure and function. Klamina was measured for sun and shade leaves of six woody temperate species growing in moist soil, and tested for correlation with the prevailing leaf irradiance, and with 22 other leaf traits. Klamina varied from 7.40 × 10?5 kg m?2 s?1 MPa?1 for Acer saccharum shade leaves to 2.89 × 10?4 kg m?2 s?1 MPa?1 for Vitis labrusca sun leaves. Tree sun leaves had 15–67% higher Klamina than shade leaves. Klamina was co‐ordinated with traits associated with high water flux, including leaf irradiance, petiole hydraulic conductance, guard cell length, and stomatal pore area per lamina area. Klamina was also co‐ordinated with lamina thickness, water storage capacitance, 1/mesophyll water transfer resistance, and, in five of the six species, with lamina perimeter/area. However, for the six species, Klamina was independent of inter‐related leaf traits including leaf dry mass per area, density, modulus of elasticity, osmotic potential, and cuticular conductance. Klamina was thus co‐ordinated with structural and functional traits relating to liquid‐phase water transport and to maximum rates of gas exchange, but independent of other traits relating to drought tolerance and to aspects of carbon economy.  相似文献   

3.
Ozone pollution may reduce net carbon gain in forests, yet data from mature trees are rare and the effects of irradiance on the response of photosynthesis to ozone remain untested. We used an open-air system to expose 10 branches within the upper canopy of an 18-m-tall stand of sugar maple (Acer saccharum Marsh.) to twice-ambient concentrations of ozone (95nmol mol?1, 0900 to 1700, 1 h mean) relative to 10 paired, untreated controls (45nmol mol?1) over 3 months. The branch pairs were selected along a gradient from relatively high irradiance (PPFD 14.5 mol m?2 d?1) to deep shade (0.7mol m?2 d?1). Ozone reduced light-saturated rates of net photosynthesis (Asat) and increased dark respiration by as much as 56 and 40%, respectively. Compared to sun leaves, shade leaves exhibited greater proportional reductions in Asat and had lower chlorophyll concentrations, quantum efficiencies, and leaf absorptances when treated with ozone relative to controls. With increasing ozone dose over time, Asat became uncoupled from stomatal conductance as ratios of internal to external concentrations of carbon dioxide increased, reducing water-use efficiency. Ozone reduced net photosynthesis and impaired stomatal function, with these effects depending on the irradiance environment of the canopy leaves. Increased ozone sensitivity of shade leaves compared to sun leaves has consequences for net carbon gain in canopies.  相似文献   

4.
Eurya japonica occurs in diverse light environments through seed dispersal by birds. As the seed size is extremely small, we hypothesized that newly germinated seedlings with restricted depth of roots and length of the hypocotyl would suffer high mortality due to increased transpiration in sunny habitats and low light in shady habitats. We also expected that surviving seedlings would differ in leaf traits between habitats as a result of selection. We aimed to determine how photosynthetic traits differ between habitats and how leaf structure is related to this difference. We examined photosynthesis and leaf morpho‐anatomy for plants cloned from cuttings collected from the forest understory (shade population) and neighboring roadsides and cut‐over areas (sun population) and then grown under two irradiances (18.5% and 100% sunlight) in an experimental garden. Under growth in 100% sunlight, cloned plants from the sun population exhibited significantly greater area‐based photosynthetic capacity compared to cloned plants from the shade population at a comparable stomatal conductance, which was attributable to a higher area‐based leaf nitrogen concentration. On the other hand, mean values of photosynthetic capacity did not significantly differ between the two populations. Cloned plants from the sun population had significantly thicker leaf laminas and spongy tissue and lower stomatal density compared to cloned plants from the shade population. Thickened leaf lamina might have increased leaf tolerance to physical stresses in open habitats. The variation in leaf morpho‐anatomy between the two populations can be explained in terms of the economy of leaf photosynthetic tissue.  相似文献   

5.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

6.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

7.
Leaf morphology varies reliably with increasing altitude in many species, and this is generally considered to be related to temperature. Changes in irradiance with elevation may confound any relationships between a morphological character and altitude, particularly if altitude of origin affects the response to irradiance. Here we describe the interaction between irradiance and altitude of origin on leaf morphology of Southern beech, Nothofagus cunninghamii. Cuttings from each of four altitudes were grown in a glasshouse under full sunlight or 50% shade, and leaf morphology was related to irradiance, altitude of origin and accession. There was a significant interaction between irradiance and altitude of origin for leaf length, width, thickness, area, weight, specific leaf area and stomatal density. There was no effect of altitude on leaf length to width ratio or stomatal index, nor was there an interaction between irradiance and altitude of origin for these variables. These results show that the altitude of origin of a plant has an overriding impact on the leaf morphological response to irradiance. This must be considered in climatic reconstructions.  相似文献   

8.
Advanced lines of Pima cotton ( Gossypium barbadense L.) bred for higher yield potential and heat resistance have higher stomata conductance and smaller leaf areas than those of obsolete lines. In controlled experiments, five commercial lines of Pima cotton having increasing lint yield and heat resistance showed a gradient of increasing stomatal conductance and decreasing leaf size. In field experiments, heat-sensitive, low yield Pima lines showed a lower stomatal conductance than high yielding, advanced lines. This indicates that selection for high yield potential and heat resistance has imposed a selection pressure for higher stomatal conductance and smaller leaf areas. The higher stomatal conductance and smaller leaf area in the advanced lines resulted in a lower leaf temperature in both controlled environments and in the field. The largest leaf temperature differences between obsolete and advanced lines were observed in the afternoon. These differences coincided with the largest differences in stomatal conductance and the highest air temperatures. Measurements of stomatal conductance and leaf temperature in field-grown progeny from a cross between the advanced line, Pima S-6. and the obsolete line, Pima 32, showed that genetically determined differences in stomatal conductance resulted in corresponding differences in leaf temperature. None of the altered physiological traits were selected for in the breeding program, indicating that selection for the desired agronomic traits imposed selection pressures on the altered physiological traits. The increases in stomatal conductance and decreases in leaf area could represent an integrated response to selection pressures on enhanced evaporative cooling, ensuing from selection for heat resistance.  相似文献   

9.
In order to parametrize a leaf submodel of a canopy level gas-exchange model, a series of photosynthesis and stomatal conductance measurements were made on leaves of white oak (Quercus alba L.) and red maple (Acer rubrum L.) in a mature deciduous forest near Oak Ridge, TN. Gas-exchange characteristics of sun leaves growing at the top of a 30 m canopy and of shade leaves growing at a depth of 3–4 m from the top of the canopy were determined. Measured rates of net photosynthesis at a leaf temperature of 30°C and saturating photosynthetic photon flux density, expressed on a leaf area basis, were significantly lower (P = 0.01; n = 8) in shade leaves (7.9μmol m?2 s?1) than in sun leaves (11–5μmol m?2 s?1). Specific leaf area increased significantly with depth in the canopy, and when photosynthesis rates were expressed on a dry mass basis, they were not significantly different for shade and sun leaves. The percentage leaf nitrogen did not vary significantly with height in the canopy; thus, rates expressed on a per unit nitrogen basis were also not significantly different in shade and sun leaves. A widely used model integrating photosynthesis and stomatal conductance was parametrized independently for sun and shade leaves, enabling us to model successfully diurnal variations in photosynthesis and evapotranspiration of both classes of leaves. Key photosynthesis model parameters were found to scale with leaf nitrogen levels. The leaf model parametrizations were then incorporated into a canopy-scale gas-exchange model that is discussed and tested in a companion paper (Baldocchi & Harley 1995, Plant, Cell and Environment 18, 1157–1173).  相似文献   

10.
The variation in stomatal characters in leaves from one Alnus glutinosa (L.) Gaertn. tree is analysed. Measurements were taken from over 70 sites on the abaxial surfaces of representative ‘sun’ and ‘shade’ leaves having the same insertion point. The mean values of stomatal density and index in the shade leaf were significantly lower (71 and 93%, respectively) than those for the sun leaf. Within leaves, up to 2.5-fold differences in stomatal density values were observed. Contour maps derived from the data reveal non-random trends over the leaf surface. Correlations between stomatal density, epidermal cell density and stomatal index indicate that the variation in stomatal density within leaves arose primarily from local differences in stomatal differentiation, rather than from local differences in leaf expansion. This research demonstrates that a high level of variation in stomatal characters occurs both within and between leaves. We conclude that a well-defined sampling strategy should be used when estimating stomatal characters for (tree) leaves. Furthermore, the leaf's insertion point and situation within the tree crown should be taken into account. We discuss the implications of these findings for palaeoclimatic interpretations and emphasize the need for great caution when drawing conclusions based solely on stomatal characters.  相似文献   

11.
The water relations, stomatal conductance, size, chlorophylland proline content have been measured in sun and shade leavesof four evergreen sclerophyll species, throuthout the year.It was found that there were no major differences in water statusof the two leaf types. However, in young expanding shade leaves,higher stomatal conductance, turgor, chlorophyll and prolinecontent leves was significantly larger. Plastochron ratios ofthe two leaf types in the four species were similar, indicatinga synchronized gorwth rate related to seasonal rhythemicity.It is suggested that different mechanisms have been operatingin the response of the two leaf-types to microclimatic conditions:an avoidance by sun leaves and tolerance by shade leaves.  相似文献   

12.
《植物生态学报》2021,44(12):1203
Aims The subject of this study was to investigate warming effects on leaf stomatal traits, anatomical structure and photosynthetic traits of four common tree species in subtropical evergreen broad-leaved forest of southern China, and to compare their physiological adaptability to warming. Our study aims to provide a theoretical basis for better predicting the tree growth of native forests in a warming climate.Methods One-year-old seedlings of Syzygium rehderianum, Ormosia pinnata, Castanopsis hystrix and Schima superba were selected and exposed to two levels of temperature (ambient temperature and infrared heater warming). Leaf stomatal traits, anatomical structure and photosynthetic characteristics were measured to represent the abilities of stomatal regulation, leaf tissue regulation and nutrient maintenance, respectively.Important findings For Syzygium rehderianum, warming decreased its leaf sponge tissue thickness, photosynthetic nitrogen-use efficiency (PNUE) and photosynthetic phosphorous-use efficiency (PPUE). Seedling of O. pinnata exposed to warming showed increased stomatal conductance, photosynthetic rate, PNUE and PPUE, but decreased stomatal density, leaf thickness and palisade tissue thickness. For C. hystrix, warming decreased the stomata size, but did not affect its photosynthetic rate. Seedling of Schima superba exposed to warming showed lower stomata density, leaf palisade tissue thickness, photosynthetic rate, PNUE and PPUE, but higher stomata size. These results suggested that O. pinnata, Syzygium rehderianum and Schima superba could reduce their leaf thickness to acclimate to warming conditions. The abilities of stomatal regulation, nutrient maintenance, photosynthetic rate and PNUE varied among these tree species. Warming would be beneficial for the growth of O. pinnata due to increased photosynthetic rate, PNUE and PPUE, while not for Syzygium rehderianum and Schima superba, the two dominant tree species of native forests. This study indicated that, with projected climate change, O. pinnata may replace Syzygium rehderianum and Schima superba as a new dominant tree species in the subtropical evergreen broad-leaved forest for its stronger adaptability to warming.  相似文献   

13.
以红枝蒲桃(Syzygium rehderianum)、海南红豆(Ormosia pinnata)、红锥(Castanopsis hystrix)和木荷(Schima superba) 4种南亚热带常绿阔叶林典型树种为研究对象, 采用红外-箱式增温的方法, 研究4个树种叶片气孔性状(表征气孔调节能力)、叶片解剖结构(表征叶片组织调节能力)和光合特征(表征养分维持能力)对增温的响应情况, 比较不同树种在增温背景下的生理生态适应能力, 为预测该地区森林植物在全球变暖情形下的生长变化趋势提供理论依据。结果表明: 增温后, 红枝蒲桃叶片海绵组织厚度减小, 且光合氮利用效率(PNUE)和光合磷利用效率(PPUE)降低; 海南红豆气孔导度增大、气孔密度减小以及叶片厚度和栅栏组织厚度减小, 同时光合速率、PNUEPPUE升高; 红锥气孔大小缩小, 但光合速率不变; 木荷气孔增大而密度减小, 栅栏组织厚度减小, 光合速率、PNUEPPUE降低。综上所述, 红枝蒲桃、海南红豆和木荷能够通过降低叶片厚度来适应高温环境, 不同物种的气孔调节、养分维持、光合速率和光合养分利用效率对增温的响应存在差异。增温有利于固氮植物海南红豆的生长, 但不利于传统优势树种木荷和红枝蒲桃的生长。因此, 在未来气候变暖的情况下, 固氮植物海南红豆由于具有较强的适应能力, 在南亚热带常绿阔叶林中可能会取代木荷和红枝蒲桃等成为新的优势树种。  相似文献   

14.
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species'' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.  相似文献   

15.
Tropical cloud forests are considered humid ecosystems with frequent cloud cover down to the ground surface. However, seasonal variation in precipitation may induce short-term water stress. For canopy leaves, this water stress may also be a consequence of large atmospheric vapor pressure deficits. The objective of this work was to study five canopy cloud forest species to determine if there are restrictions to leaf gas exchange as a consequence of seasonality in precipitation and to daily water deficit due to air evaporative demand mainly during maximum incoming radiation hours. Seasonal daily courses of microclimatic variables (air temperature, relative humidity, photosynthetic photon flux density) and plant responses (leaf water potential, stomatal conductance, CO2 assimilation rates, leaf nitrogen concentration) were measured at 2400 m asl in Monterrey, an intermontane valley of the Venezuelan Andes. A gradient in terms of responses to water stress conditions was observed between the species, with Clusia multiflora (a 46% reduction in stomatal conductance between seasons) as the most affected and Miconia resimoides (increased stomatal conductance) responding more favorably to slight water stress conditions. If we consider the limitations of water stress and/or light conditions on CO2 assimilation we may arrange the species into those in which water stress conditions have a greater impact on leaf carbon gain, those where light conditions are determinant and one in which both water stress and light conditions may affect leaf carbon assimilation.  相似文献   

16.
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas‐exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady‐state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady‐states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.  相似文献   

17.
The acclimation responses of walnut leaf photosynthesis to the irradiance microclimate were investigated by characterizing the photosynthetic properties of the leaves sampled on young trees (Juglans nigraxregia) grown in simulated sun and shade environments, and within a mature walnut tree crown (Juglans regia) in the field. In the young trees, the CO(2) compensation point in the absence of mitochondrial respiration (Gamma*), which probes the CO(2) versus O(2) specificity of Rubisco, was not significantly different in sun and shade leaves. The maximal net assimilation rates and stomatal and mesophyll conductances to CO(2) transfer were markedly lower in shade than in sun leaves. Dark respiration rates were also lower in shade leaves. However, the percentage inhibition of respiration by light during photosynthesis was similar in both sun and shade leaves. The extent of the changes in photosynthetic capacity and mesophyll conductance between sun and shade leaves under simulated conditions was similar to that observed between sun and shade leaves collected within the mature tree crown. Moreover, mesophyll conductance was strongly correlated with maximal net assimilation and the relationships were not significantly different between the two experiments, despite marked differences in leaf anatomy. These results suggest that photosynthetic capacity is a valuable parameter for modelling within-canopies variations of mesophyll conductance due to leaf acclimation to light.  相似文献   

18.
Phenotypic plasticity in response to light in the coffee tree   总被引:2,自引:0,他引:2  
Phenotypic plasticity to light availability was examined at the leaf level in field-grown coffee trees (Coffea arabica). This species has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Specifically, we focused our attention on the morpho-anatomical plasticity, the balance between light capture and excess light energy dissipation, as well as on physiological traits associated with carbon gain. A wide natural light gradient, i.e., a diurnal intercepted photon irradiance differing by a factor of 25 between the deepest shade leaves and the more exposed leaves in the canopy, was explored. Responses of most traits to light were non-linear, revealing the classic leaf sun vs. leaf shade dichotomy (e.g., compared with sun leaves, shade leaves had a lower stomatal density, a thinner palisade mesophyll, a higher specific leaf area, an improved light capture, a lower respiration rate, a lower light compensating point and a limited capacity for photoprotection). The light-saturated rates of net photosynthesis were higher in sunlit than in shade leaves, although sun leaves were not efficient enough to use the extra light supply. However, sun leaves showed well-developed photoprotection mechanisms in comparison to shade leaves, which proved sufficient for avoiding photoinhibition. Specifically, a higher non-photochemical quenching coefficient was found in parallel to increases in: (i) zeaxanthin pools, (ii) de-epoxidation state of the xanthophyll cycle, and (iii) activities of some antioxidant enzymes. Intracanopy plasticity depended on the suite of traits considered, and was high for some physiological traits associated with photoprotection and maintenance of a positive carbon balance under low light, but low for most morpho-anatomical features. Our data largely explain the successful cultivation of the coffee tree in both exposed and shade environments, although with a poor resource-use efficiency in high light.  相似文献   

19.
1. One-year-old seedlings of shade tolerant Acer rubrum and intolerant Betula papyrifera were grown in ambient and twice ambient (elevated) CO2, and in full sun and 80% shade for 90 days. The shaded seedlings received 30-min sun patches twice during the course of the day. Gas exchange and tissue–water relations were measured at midday in the sun plants and following 20 min of exposure to full sun in the shade plants to determine the effect of elevated CO2 on constraints to sun-patch utilization in these species.
2. Elevated CO2 had the largest stimulation of photosynthesis in B. papyrifera sun plants and A. rubrum shade plants.
3. Higher photosynthesis per unit leaf area in sun plants than in shade plants of B. papyrifera was largely owing to differences in leaf morphology. Acer rubrum exhibited sun/shade differences in photosynthesis per unit leaf mass consistent with biochemical acclimation to shade.
4. Betula papyrifera exhibited CO2 responses that would facilitate tolerance to leaf water deficits in large sun patches, including osmotic adjustment and higher transpiration and stomatal conductance at a given leaf-water potential, whereas A. rubrum exhibited large increases in photosynthetic nitrogen-use efficiency.
5. Results suggest that species of contrasting successional ranks respond differently to elevated CO2, in ways that are consistent with the habitats in which they typically occur.  相似文献   

20.
The gas exchange of 19 widely different warm climate species was observed at different leaf to air vapour pressure deficits (VPD). In all species stomata tended to close as VPD increased resulting in a decrease in net photosynthesis. The absolute reduction in leaf conductance per unit increase in VPD was greatest in those species which had a large leaf conductance at low VPDs. This would be expected even if stomata of all species were equally sensitive. However the percentage reduction in net photosynthesis (used as a measure of the relative sensitivity of stomata of the different species) was also closely related to the maximal conductance at low VPD. Similarily the relative sensitivity of stomata to changes in VPD was closely related to the weighted stomatal density or crowding index.The hypothesis is presented that stomatal closure at different VPDs is related to peristomatal evaporation coupled with a high resistance between the epidermis and the mesophyll and low resistance between the stomatal apparatus and the epidermal cells. This hypothesis is consistent with the greater relative sensitivity of stomata on leaves with a high crowding index.The results and the hypothesis are discussed in the light of selection, for optimal productivity under differing conditions of relative humidity and soil water availablility, by observation of stomatal density and distribution on the two sides of the leaf.Visiting scientist, plant physiologist and research assitant of the Cassava Program  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号