首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fatty acid synthase (FAS) promotes energy storage through de novo lipogenesis and participates in signaling by the nuclear receptor PPARα in noncardiac tissues. To determine if de novo lipogenesis is relevant to cardiac physiology, we generated and characterized FAS knockout in the myocardium (FASKard) mice. FASKard mice develop normally, manifest normal resting heart function, and have normal cardiac PPARα signaling as well as fatty acid oxidation. However, they decompensate with stress. Most die within 1 h of transverse aortic constriction, probably due to arrhythmia. Voltage clamp measurements of FASKard cardiomyocytes show hyperactivation of L-type calcium channel current that could not be reversed with palmitate supplementation. Of the classic regulators of this current, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not protein kinase A signaling is activated in FASKard hearts, and knockdown of FAS in cultured cells activates CaMKII. In addition to being intolerant of the stress of acute pressure, FASKard hearts were also intolerant of the stress of aging, reflected as persistent CaMKII hyperactivation, progression to dilatation, and premature death by ~1 year of age. CaMKII signaling appears to be pathogenic in FASKard hearts because inhibition of its signaling in vivo rescues mice from early mortality after transverse aortic constriction. FAS was also increased in two mechanistically distinct mouse models of heart failure and in the hearts of humans with end stage cardiomyopathy. These data implicate a novel relationship between FAS and calcium signaling in the heart and suggest that FAS induction in stressed myocardium represents a compensatory response to protect cardiomyocytes from pathological calcium flux.  相似文献   

3.
4.
The Par complex (Par-6/Par-3/aPKC) plays a key role in the maintenance of the intestinal barrier function through the regulation of epithelial junction formation. The aryl hydrocarbon receptor (AhR) has been shown to be an important regulator for intestinal homeostasis. In this study, we investigated the role of the AhR activation on the regulation of Par complex. AhR activation by 6-formylindolo (3,2-b) carbazole (FICZ) represses the abnormal expression of the Par complex in a mouse model of dextran sulphate sodium (DSS)-induced colitis. In T84 cells, overexpression of Par-6 causes intestinal barrier dysfunction. Lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction and increase in Par-6 expression was prevented by AhR activation. However, FICZ did not alter the expression of Par-3 or aPKC. Furthermore, AhR activation alleviated LPS-induced increase of Par-6 through repressing the expression of activating protein-2γ (Ap-2γ). These results reveal the protective effects of AhR activation on LPS induced disruption of intestinal epithelial barrier function through suppressing the expression of Par-6 expression. Our findings provide novel insights into the protective role of AhR in intestinal barrier function.  相似文献   

5.
Glutamine and intestinal barrier function   总被引:1,自引:0,他引:1  
  相似文献   

6.
Xia XM  Wang FY  Zhou J  Hu KF  Li SW  Zou BB 《PloS one》2011,6(11):e27282
Ulcerative colitis is a gastrointestinal disorder characterized by local inflammation and impaired epithelial barrier. Previous studies demonstrated that CXC chemokine receptor 4 (CXCR4) antagonists could reduce colonic inflammation and mucosal damage in dextran sulfate sodium (DSS)-induced colitis. Whether CXCR4 antagonist has action on intestinal barrier and the possible mechanism, is largely undefined. In the present study, the experimental colitis was induced by administration of 5% DSS for 7 days, and CXCR4 antagonist AMD3100 was administered intraperitoneally once daily during the study period. For in vitro study, HT-29/B6 colonic cells were treated with cytokines or AMD3100 for 24 h until assay. DSS-induced colitis was characterized by morphologic changes in mice. In AMD3100-treated mice, epithelial destruction, inflammatory infiltration, and submucosal edema were markedly reduced, and the disease activity index was also significantly decreased. Increased intestinal permeability in DSS-induced colitis was also significantly reduced by AMD3100. The expressions of colonic claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 were markedly decreased after DSS administration, whereas colonic claudin-2 expression was significantly decreased. Treatment with AMD3100 prevented all these changes. However, AMD3100 had no influence on claudin-3, claudin-5, claudin-7 and claudin-8 expression in HT-29/B6 cells. Cytokines as TNF-α, IL-6, and IFN-γ increased apoptosis and monolayer permeability, inhibited the wound-healing and the claudin-3, claudin-7 and claudin-8 expression in HT-29/B6 cells. We suggest that AMD3100 acted on colonic claudin expression and intestinal barrier function, at least partly, in a cytokine-dependent pathway.  相似文献   

7.
Fatty acid acylation of salivary mucin in rat submandibular glands   总被引:2,自引:0,他引:2  
The acylation of salivary mucin with fatty acids and its biosynthesis was investigated by incubating rat submandibular salivary gland cells with [3H]palmitic acid and [3H]proline. The elaborated extracellular and intracellular mucus glycoproteins following delipidation, Bio-Gel P-100 chromatography, and CsCl equilibrium density gradient centrifugation were analyzed for the distribution of the labeled tracers. Both preparations gave single bands at the CsCl density of 1.48, in which carbohydrate peaks coincided with that of the labels. The [3H]palmitic acid in these glycoproteins was susceptible to cleavage by alkali and hydroxylamine, thus indicating the ester nature of the bond. With both intracellular and extracellular glycoproteins deacylation caused the glycoproteins to band in the CsCl gradient at a density of 1.55. The incorporation of both markers into mucus glycoprotein increased steadily with time up to 4 h, at which time about 65% of [3H]palmitate and [3H]proline were found in the extracellular glycoprotein and 35% in the intracellular glycoprotein. The incorporation ratio of proline/palmitate, while showing an increase with incubation time in the extracellular glycoprotein, remained essentially unchanged with time in the intracellular glycoprotein and at 4 h reached respective values of 0.14 and 1.12. The fact that the proline/palmitate incorporation ratio in the intracellular glycoprotein at 1 h of incubation was 22 times higher than in the extracellular and 8 times higher after 4 h suggests that acylation occurs intracellularly and that fatty acids are added after apomucin polypeptide synthesis. As the incorporation of palmitate within the intracellular mucin was greater in the mucus glycoprotein subunit, it would appear that fatty acid acylation of mucin subunits preceeds their assembly into the mucus glycoprotein polymer.  相似文献   

8.
Zhou Y  Niu C  Li Y  Gao B  Zheng J  Guo X  Ma W 《Molecular biology reports》2012,39(10):9733-9739
Fatty acid synthase (FASN) overexpression has also been associated with a variety of human malignancies including tumor progression, aggressiveness, and metastasis. To investigate the role of FASN expression in esophageal cancer, we evaluated 60 cases of squamous cell carcinoma, 20 cases of adenocarcinoma, and 10 cases of normal esophageal tissues. We found that FASN was detected in 95?% human squamous cell carcinoma, and in 90?% human adenocarcinoma samples. However, all cases of normal esophageal epithelium did not express the protein of FASN. Further, to investigate the role of FASN in tumorigenesis and development, we analyze the growth and migration by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation and wound healing assay. We found that inhibition of FASN expression in TE13 cells by RNAi suppressed the growth of cells. Decreased FASN expression mitigated the migration of TE13 cells. These studies demonstrated the functional importance of FASN in esophageal tumorigenesis, and suggested that inhibiting FASN might be applied to treat esophageal cancer.  相似文献   

9.
T‐cadherin is an atypical member of the cadherin family, which lacks the transmembrane and intracellular domains and is attached to the plasma membrane via a glycosylphosphatidylinositol anchor. Unlike canonical cadherins, it is believed to function primarily as a signaling molecule. T‐cadherin is highly expressed in endothelium. Using transendothelial electrical resistance measurements and siRNA‐mediated depletion of T‐cadherin in human umbilical vein endothelial cells, we examined its involvement in regulation of endothelial barrier. We found that in resting confluent monolayers adjusted either to 1% or 10% serum, T‐cadherin depletion modestly, but consistently reduced transendothelial resistance. This was accompanied by increased phosphorylation of Akt and LIM kinase, reduced phosphorylation of p38 MAP kinase, but no difference in tubulin acetylation and in phosphorylation of an actin filament severing protein cofilin and myosin light chain kinase. Serum stimulation elicited a biphasic increase in resistance with peaks at 0.5 and 4–5 h, which was suppressed by a PI3 kinase/Akt inhibitor wortmannin and a p38 inhibitor SB 239063. T‐cadherin depletion increased transendothelial resistance between the two peaks and reduced the amplitude of the second peak. T‐cadherin depletion abrogated serum‐induced Akt phosphorylation at Thr308 and reduced phosphorylation at Ser473, reduced phosphorylation of cofilin, and accelerated tubulin deacetylation. Adiponectin slightly improved transendothelial resistance irrespectively of T‐cadherin depletion. T‐cadherin depletion also resulted in a reduced sensitivity and delayed responses to thrombin. These data implicate T‐cadherin in regulation of endothelial barrier function, and suggest a complex signaling network that links T‐cadherin and regulation of barrier function. J. Cell. Physiol. 223: 94–102, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
肠道微生物对肠道屏障功能完整性的维护机制研究概况   总被引:1,自引:1,他引:1  
肠道微生物群是一个稳定且复杂的生态系统,可以通过形成菌膜屏障或促进肠道上皮细胞增殖分化等方式形成保护屏障,并在肠道病原菌感染和威胁期间维持和促进免疫稳态中起积极作用。本文重点叙述宿主-肠道微生物相互作用过程中抗病原菌感染的方式,以及肠道微生物参与合成抗菌化合物抵御肠道病原菌入侵和威胁的机制,为调控肠道微生物解决临床胃肠道疾病及其相关症状提供理论参考依据。  相似文献   

11.
Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.  相似文献   

12.
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.  相似文献   

13.
Dihydroceramide is a lipid molecule generated via the action of (dihydro)ceramide synthases (CerSs), which use two substrates, namely sphinganine and fatty acyl-CoAs. Sphinganine is generated via the sequential activity of two integral membrane proteins located in the endoplasmic reticulum. Less is known about the source of the fatty acyl-CoAs, although a number of cytosolic proteins in the pathways of acyl-CoA generation modulate ceramide synthesis via direct or indirect interaction with the CerSs. In this study, we demonstrate, by proteomic analysis of immunoprecipitated proteins, that fatty acid transporter protein 2 (FATP2) (also known as very long-chain acyl-CoA synthetase) directly interacts with CerS2 in mouse liver. Studies in cultured cells demonstrated that other members of the FATP family can also interact with CerS2, with the interaction dependent on both proteins being catalytically active. In addition, transfection of cells with FATP1, FATP2, or FATP4 increased ceramide levels although only FATP2 and 4 increased dihydroceramide levels, consistent with their known intracellular locations. Finally, we show that lipofermata, an FATP2 inhibitor which is believed to directly impact tumor cell growth via modulation of FATP2, decreased de novo dihydroceramide synthesis, suggesting that some of the proposed therapeutic effects of lipofermata may be mediated via (dihydro)ceramide rather than directly via acyl-CoA generation. In summary, our study reinforces the idea that manipulating the pathway of fatty acyl-CoA generation will impact a wide variety of down-stream lipids, not least the sphingolipids, which utilize two acyl-CoA moieties in the initial steps of their synthesis.  相似文献   

14.
15.
Fatty acid desaturation in the intestinal mucosa   总被引:1,自引:0,他引:1  
Information as to the ability of the enterocyte to desaturate fatty acids is lacking. This is important in understanding whether the source of intestinal arachidonic (20:4(n-6) acid is biliary or from de novo synthesis. Delta 9- and delta 6-desaturase enzymes were assayed in homogenates of rat jejunum, ileum and liver. Rat small intestine possesses desaturase activity to convert palmitic (16:0) to palmitoleic (16:1) and linoleic (18:2(n-6) to linolenic (18:3(n-6) acid. Enzyme activities were highest in liver relative to activity in jejunal and ileal homogenates. It is concluded that delta 9- and delta 6-desaturase activities may have an important role in determining physico-chemical properties and thus transport properties of enterocyte membranes.  相似文献   

16.
Previously, we have demonstrated that the chloride channel ClC-2 modulates intestinal mucosal barrier function. In the present study, we investigated the role of ClC-2 in epithelial barrier development and maintenance in Caco-2 cells. During early monolayer formation, silencing of ClC-2 with small interfering (si)RNA led to a significant delay in the development of transepithelial resistance (TER) and disruption of occludin localization. Proteomic analysis employing liquid chromatography-mass spectrometry /mass spectrometry revealed association of ClC-2 with key proteins involved in intracellular trafficking, including caveolin-1 and Rab5. In ClC-2 siRNA-treated cells, occludin colocalization with caveolin-1 was diffuse and in the subapical region. Subapically distributed occludin in ClC-2 siRNA-treated cells showed marked colocalization with Rab5. To study the link between ClC-2 and trafficking of occludin in confluent epithelial monolayers, a Caco-2 cell clone expressing ClC-2 short hairpin (sh)RNA was established. Disruption of caveolae with methyl-β-cyclodextrin (MβCD) caused a marked drop in TER and profound redistribution of caveolin-1-occludin coimmunofluorescence in ClC-2 shRNA cells. In ClC-2 shRNA cells, focal aggregations of Rab5-occludin coimmunofluorescence were present within the cytoplasm. Wortmannin caused an acute fall in TER in ClC-2 shRNA cells and subapical, diffuse redistribution of Rab5-occludin coimmunofluorescence in ClC-2 shRNA cells. An endocytosis and recycling assay for occludin revealed higher basal rate of endocytosis of occludin in ClC-2 shRNA cells. Wortmannin significantly reduced the rate of recycling of occludin in ClC-2 shRNA cells. These data clearly indicate that ClC-2 plays an important role in the modulation of tight junctions by influencing caveolar trafficking of the tight junction protein occludin.  相似文献   

17.
Fatty acid synthase, a proficient multifunctional enzyme   总被引:44,自引:0,他引:44  
S J Wakil 《Biochemistry》1989,28(11):4523-4530
  相似文献   

18.
Vasoactive intestinal peptide modulates Langerhans cell immune function   总被引:2,自引:0,他引:2  
Epidermal nerves lie in close proximity to Langerhans cells (LC) and are capable of releasing peptides that modulate LC function, including calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide. The neuropeptide vasoactive intestinal peptide (VIP) has also been found in cutaneous nerves and mRNA, for the VIP receptor vasoactive intestinal peptide receptor type 1, and vasoactive intestinal peptide receptor type 2 have been found in murine LC and the LC-like cell line XS106. We examined the effects of VIP on LC function and cutaneous immunity. VIP inhibited elicitation of a delayed-type hypersensitivity response in previously immunized mice by epidermal cells enriched for LC content pulsed with Ag in vitro. VIP also inhibited the ability of unseparated epidermal cells to present Ag to a T cell clone and hybridoma and the ability of highly enriched LCs to present to the T cell clone. Inhibition of presentation to the hybridoma was observed with an antigenic peptide that does not require processing, suggesting that VIP is active at a step independent of Ag processing. To elucidate the mechanism(s) by which VIP may mediate these effects, we determined the effects of VIP on LC cytokine production using the XS106 cell line as a surrogate for LC. VIP augmented the production of the IL-10 in LPS-stimulated XS106 cells while down-regulating IL-12 and IL-1beta production. Thus, VIP, like pituitary adenylate cyclase-activating polypeptide and calcitonin gene-related peptide, down-regulates LC function and the associated immune response.  相似文献   

19.
Bile acids are efficiently absorbed from the intestinal lumen via the ileal apical sodium-dependent bile acid transporter (ASBT). ASBT function is essential for maintenance of cholesterol homeostasis in the body. The molecular mechanisms of the direct effect of cholesterol on human ASBT function and expression are not entirely understood. The present studies were undertaken to establish a suitable in vitro experimental model to study human ASBT function and its regulation by cholesterol. Luminal membrane bile acid transport was evaluated by the measurement of sodium-dependent 3H-labeled taurocholic acid (3H-TC) uptake in human intestinal Caco-2 cell monolayers. The relative abundance of human ASBT (hASBT) mRNA was determined by real-time PCR. Transient transfection and luciferase assay techniques were employed to assess hASBT promoter activity. Caco-2 cell line was found to represent a suitable model to study hASBT function and regulation. 25-Hydroxycholesterol (25-HCH; 2.5 microg/ml for 24 h) significantly inhibited Na(+)-dependent 3H-TC uptake in Caco-2 cells. This inhibition was associated with a 50% decrease in the V(max) of the transporter with no significant changes in the apparent K(m). The inhibition in hASBT activity was associated with reduction in both the level of hASBT mRNA and its promoter activity. Our data show the inhibition of hASBT function and expression by 25-HCH in Caco-2 cells. These data provide novel evidence for the direct regulation of human ASBT function by cholesterol and suggest that this phenomenon may play a central role in cholesterol homeostasis.  相似文献   

20.
The deleterious effects of stress on the gastrointestinal tract seem to be mainly mediated by the induction of intestinal barrier dysfunction and subsequent subtle mucosal inflammation. Cannabinoid 1 receptor (CB1R) is expressed in the mammalian gut under physiological circumstances. The aim of this investigation is to study the possible role of CB1R in the maintenance of mucosal homeostasis after stress exposure. CB1R knockout mice (CB1R(-/-)) and their wild-type (WT) counterparts were exposed to immobilization and acoustic (IA) stress for 2 h per day during 4 consecutive days. Colonic protein expression of the inducible forms of the nitric oxide synthase and cyclooxygenase (NOS2 and COX2), IgA production, permeability to (51)Cr-EDTA, and bacterial translocation to mesenteric lymph nodes were evaluated. Stress exposure induced greater expression of proinflammatory enzymes NOS2 and COX2 in colonic mucosa of CB1R(-/-) mice when compared with WT animals. These changes were related with a greater degree of colonic barrier dysfunction in CB1R(-/-) animals determined by 1) a significantly lower IgA secretion, 2) higher paracellular permeability to (51)Cr-EDTA, and 3) higher bacterial translocation, both under basal conditions and after IA stress exposure. Pharmacological antagonism with rimonabant reproduced stress-induced increase of proinflammatory enzymes in the colon described in CB1R(-/-) mice. In conclusion, CB1R exerts a protective role in the colon in vivo through the regulation of intestinal secretion of IgA and paracellular permeability. Pharmacological modulation of cannabinoid system within the gastrointestinal tract might be therapeutically useful in conditions on which intestinal inflammation and barrier dysfunction takes place after exposure to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号