首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GacH is the solute binding protein (receptor) of the putative oligosaccharide ATP-binding cassette transporter GacFG, encoded in the acarbose biosynthetic gene cluster (gac) from Streptomyces glaucescens GLA.O. In the context of the proposed function of acarbose (acarviosyl-1,4-maltose) as a ‘carbophor,’ the transporter, in complex with a yet to be identified ATPase subunit, is supposed to mediate the uptake of longer acarbose homologs and acarbose for recycling purposes. Binding assays using isothermal titration calorimetry identified GacH as a maltose/maltodextrin-binding protein with a low affinity for acarbose but with considerable binding activity for its homolog, component 5C (acarviosyl-1,4-maltose-1,4-glucose-1,1-glucose). In contrast, the maltose-binding protein of Salmonella typhimurium (MalE) displays high-affinity acarbose binding. We determined the crystal structures of GacH in complex with acarbose, component 5C, and maltotetraose, as well as in unliganded form. As found for other solute receptors, the polypeptide chain of GacH is folded into two distinct domains (lobes) connected by a hinge, with the interface between the lobes forming the substrate-binding pocket. GacH does not specifically bind the acarviosyl group, but displays specificity for binding of the maltose moiety in the inner part of its binding pocket. The crystal structure of acarbose-loaded MalE showed that two glucose units of acarbose are bound at the same region and position as maltose. A comparative analysis revealed that in GacH, acarbose is buried deeper into the binding pocket than in MalE by exactly one glucose ring shift, resulting in a total of 18 hydrogen-bond interactions versus 21 hydrogen-bond interactions for MalEacarbose. Since the substrate specificity of ATP-binding cassette import systems is determined by the cognate binding protein, our results provide the first biochemical and structural evidence for the proposed role of GacHFG in acarbose metabolism.  相似文献   

2.
ATP-binding cassette (ABC) transporters are integral membrane proteins that carry a variety of substrates across biological membranes at the expense of ATP. The here considered prokaryotic canonical importers consist of three entities: an extracellular solute receptor, two membrane-intrinsic proteins forming a translocation pathway, and two cytoplasmic ATP-binding subunits. The ngo0372-74 and ngo2011-14 gene clusters from the human pathogen Neisseria gonorrhoeae were predicted by sequence homology as ABC transporters for the uptake of cystine and cysteine, respectively, and chosen for structural characterization. The structure of the receptor component Ngo0372 was obtained in a ligand-free "open" conformation and in a "closed" conformation when co-crystallized with L-cystine. Our data provide the first structural information of an L-cystine ABC transporter. Dissociation constants of 21 and 33 nM for L-cystine and L-selenocystine, respectively, were determined by isothermal titration calorimetry. In contrast, L-cystathionine and L-djenkolic acid are weak binders, while no binding was detectable for S-methyl-L-cysteine. Mutational analysis of two residues from the binding pocket, Trp97 and Tyr59, revealed that the latter is crucial for L-cystine binding. The structure of the Ngo2014 receptor was obtained in closed conformation in complex with co-purified L-cysteine. The protein binds L-cysteine with a K(d) of 26 nM. Comparison of the structures of both receptors and analysis of the ligand binding sites shed light on the mode of ligand recognition and provides insight into the tight binding of both substrates. Moreover, since L-cystine limitation leads to reduction in virulence of N. gonorrhoeae, Ngo0372 might be suited as target for an antimicrobial vaccine.  相似文献   

3.
Solute receptors (binding proteins) are indispensable components of canonical ATP-binding cassette importers in prokaryotes. Here, we report on the characterization and crystal structures in the closed and open conformations of AcbH, the solute receptor of the putative carbohydrate transporter AcbFG which is encoded in the acarbose (acarviosyl-1,4-maltose) biosynthetic gene cluster from Actinoplanes sp. SE50/110. Binding assays identified AcbH as a high-affinity monosaccharide-binding protein with a dissociation constant (Kd) for β-d-galactopyranose of 9.8 ± 1.0 nM. Neither galactose-containing di- and trisaccharides, such as lactose and raffinose, nor monosaccharides including d-galacturonic acid, l-arabinose, d-xylose and l-rhamnose competed with [14C]galactose for binding to AcbH. Moreover, AcbH does not bind d-glucose, which is a common property of all but one d-galactose-binding proteins characterized to date. Strikingly, determination of the X-ray structure revealed that AcbH is structurally homologous to maltose-binding proteins rather than to glucose-binding proteins. Two helices are inserted in the substrate-binding pocket, which reduces the cavity size and allows the exclusive binding of monosaccharides, specifically β-d-galactopyranose, in the 4C1 conformation. Site-directed mutagenesis of three residues from the binding pocket (Arg82, Asp361 and Arg362) that interact with the axially oriented O4-H hydroxyl of the bound galactopyranose and subsequent functional analysis indicated that these residues are crucial for galactose binding. To our knowledge, this is the first report of the tertiary structure of a solute receptor with exclusive affinity for β-d-galactopyranose. The putative role of a galactose import system in the context of acarbose metabolism in Actinoplanes sp. is discussed.  相似文献   

4.
Family 3 G-protein-coupled receptors (GPCRs), which includes metabotropic glutamate receptors (mGluRs), sweet and "umami" taste receptors (T1Rs), and the extracellular calcium-sensing receptor (CaR), represent a distinct group among the superfamily of GPCRs characterized by large amino-terminal extracellular ligand-binding domains (ECD) with homology to bacterial periplasmic amino acid-binding proteins that are responsible for signal detection and receptor activation through as yet unresolved mechanism(s) via the seven-transmembrane helical domain (7TMD) common to all GPCRs. To address the mechanism(s) by which ligand-induced conformational changes are conveyed from the ECD to the 7TMD for G-protein activation, we altered the length and composition of a 14-amino acid linker segment common to all family 3 GPCRs except GABA(B) receptor, in the CaR by insertion, deletion, and site-directed mutagenesis of specific highly conserved residues. Small alterations in the length and composition of the linker impaired cell surface expression and abrogated signaling of the chimeric receptors. The exchange of nine amino acids within the linker of CaR with the homologous sequence of mGluR1, however, preserved receptor function. Ala substitution for the four highly conserved residues within this amino acid sequence identified a Leu at position 606 of the CaR critical for cell surface expression and signaling. Substitution of Leu(606) for Ala resulted in impaired cell surface expression. However, Ile and Val substitutions displayed strong activating phenotypes. Disruption of the linker by insertion of nine amino acids of a random-coiled structure uncoupled the ECD from regulating the 7TMD. These data are consistent with a model of receptor activation in which the peptide linker, and particularly Leu(606), provides a critical interaction for the CaR signal transmission, a finding likely to be relevant for all family 3 GPCRs containing this conserved motif.  相似文献   

5.
Bao H  Duong F 《PloS one》2012,7(4):e34836
The maltose transporter MalFGK(2), together with the substrate-binding protein MalE, is one of the best-characterized ABC transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter. Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate the acquisition of the sugar. When the maltose concentration exceeds the transport capacity, MalE captures maltose and dissociates from the transporter. This mechanism explains why the transport rate is high when MalE has low affinity for maltose, and low when MalE has high affinity for maltose. Transporter-bound MalE facilitates the acquisition of the sugar at low concentrations, but also captures and dissociates from the transporter past a threshold maltose concentration. In vivo, this maltose-forced dissociation limits the rate of transport. Given the conservation of the substrate-binding proteins, this mode of allosteric regulation may be universal to ABC importers.  相似文献   

6.
Aminopeptidase N (APN), a 150-kDa metalloprotease also called CD13, serves as a receptor for serologically related coronaviruses of humans (human coronavirus 229E [HCoV-229E]), pigs, and cats. These virus-receptor interactions can be highly species specific; for example, the human coronavirus can use human APN (hAPN) but not porcine APN (pAPN) as its cellular receptor, and porcine coronaviruses can use pAPN but not hAPN. Substitution of pAPN amino acids 283 to 290 into hAPN for the corresponding amino acids 288 to 295 introduced an N-glycosylation sequon at amino acids 291 to 293 that blocked HCoV-229E receptor activity of hAPN. Substitution of two amino acids that inserted an N-glycosylation site at amino acid 291 also resulted in a mutant hAPN that lacked receptor activity because it failed to bind HCoV-229E. Single amino acid revertants that removed this sequon at amino acids 291 to 293 but had one or five pAPN amino acid substitution(s) in this region all regained HCoV-229E binding and receptor activities. To determine if other N-linked glycosylation differences between hAPN, feline APN (fAPN), and pAPN account for receptor specificity of pig and cat coronaviruses, a mutant hAPN protein that, like fAPN and pAPN, lacked a glycosylation sequon at 818 to 820 was studied. This sequon is within the region that determines receptor activity for porcine and feline coronaviruses. Mutant hAPN lacking the sequon at amino acids 818 to 820 maintained HCoV-229E receptor activity but did not gain receptor activity for porcine or feline coronaviruses. Thus, certain differences in glycosylation between coronavirus receptors from different species are critical determinants in the species specificity of infection.  相似文献   

7.
Eilers M  Hornak V  Smith SO  Konopka JB 《Biochemistry》2005,44(25):8959-8975
All G protein-coupled receptors (GPCRs) share a common seven TM helix architecture and the ability to activate heterotrimeric G proteins. Nevertheless, these receptors have widely divergent sequences with no significant homology. We present a detailed structure-function comparison of the very divergent Class A and D receptors to address whether there is a common activation mechanism across the GPCR superfamily. The Class A and D receptors are represented by the vertebrate visual pigment rhodopsin and the yeast alpha-factor pheromone receptor Ste2, respectively. Conserved amino acids within each specific receptor class and amino acids where mutation alters receptor function were located in the structures of rhodopsin and Ste2 to assess whether there are functionally equivalent positions or regions within these receptors. We find several general similarities that are quite striking. First, strongly polar amino acids mediate helix interactions. Their mutation generally leads to loss of function or constitutive activity. Second, small and weakly polar amino acids facilitate tight helix packing. Third, proline is essential at similar positions in transmembrane helices 6 and 7 of both receptors. Mapping the specific location of the conserved amino acids and sites of constitutively active mutations identified conserved microdomains on transmembrane helices H3, H6, and H7, suggesting that there are underlying similarities in the mechanism of the widely divergent Class A and Class D receptors.  相似文献   

8.
Amino acids reliably evoke strong responses in fish olfactory system. The molecular olfactory receptors (ORs) are located in the membrane of cilia and microvilli of the olfactory receptor neurons (ORNs). Axons of ORNs converge on specific olfactory bulb (OB) glomeruli and the neural responses of ORNs expressing single Ors activate glomerular activity patterns typical for each amino acid. Chemically similar amino acids activate more similar glomerular activity patterns then chemically different amino acids. Differential glomerular activity patterns are the structural basis for amino acid perception and discrimination. We studied olfactory discrimination in zebrafish Danio rerio (Hamilton 1822) by conditioning them to respond to each of the following amino acids: L-Ala, L-Val, L-Leu, L-Arg, and L-Phe. Subsequently, zebrafish were tested for food searching activities with 18 nonconditioned amino acids. The food searching activity during 90 s of the test period was significantly greater after stimulation with the conditioned stimulus than with the nonconditioned amino acid. Zebrafish were able to discriminate all the tested amino acids except L-Ile from L-Val and L-Phe from L-Tyr. We conclude that zebrafish have difficulties discriminating amino acid odorants that evoke highly similar chemotopic patterns of activity in the OB.  相似文献   

9.
We describe the first functional and molecular characterization of an amino acid permease (LdAAP3) from the human parasitic protozoan Leishmania donovani, the causative agent of visceral leishmaniasis in humans. This permease contains 480 amino acids with 11 predicted trans-membrane domains. Expressing LdAAP3 in Saccharomyces cerevisiae mutants revealed that LdAAP3 codes for a high-affinity arginine transporter (Km 1.9 microM). LdAAP3 is highly specific for arginine as its transport was not inhibited by other amino acids or arginine-related compounds. Using green fluorescence protein (GFP) fused to the N-terminus of LdAAP3, this transporter was localized to the surface membrane of promastigotes. The GFP-LdAAP3 chimera mediated a threefold increase in arginine transport in promastigotes, indicating that it is active and confirmed that LdAAP3 codes for an arginine transporter in parasite cells as well. LdAAP3 is novel as it shares a high level of homology with amino acid permeases from other trypanosomatidae but almost none with permeases from other phyla. The results of this work suggest that LdAAP3 might play a role in host-parasite interaction.  相似文献   

10.
Our previous studies involving chimeric thyrotropin-lutropin/choriogonadotropin (TSH-LH/CG) receptors suggest that multiple segments spanning the entire extracellular domain of the human TSH receptor contribute to the TSH binding site. Nevertheless, the mid-region (segment C, amino acid residues 171-260) of the receptor extracellular domain is particularly important in TSH binding. In the present studies, we constructed seven new chimeric receptors in order to analyze segment C in further detail. Seven small segments spanning segment C of the TSH receptor were replaced with the counterpart of the rat LH/CG receptor. These mutant receptors were stably introduced into Chinese hamster ovary cells and were tested for hormone binding and cAMP responsiveness to hormone stimulation. The results indicate that 11 amino acids of the TSH receptor (Lys-201 to Lys-211) and the corresponding region of the LH/CG receptor (Thr-202 to Ile-212) are important for specific TSH and human CG binding, respectively. In addition, nine amino acids of the TSH receptor (Gly-222 to Leu-230) are also involved in TSH binding. A further conclusion from these data is that TSH and human CG bind to partially overlapping sites on their respective receptor molecules.  相似文献   

11.
Molecular cloning and expression of a fifth muscarinic acetylcholine receptor   总被引:13,自引:0,他引:13  
A cDNA of 2149 base pairs with an incomplete open reading frame (ORF) encoding amino acids 1-516 of a 531-amino acid protein highly homologous to muscarinic receptors was cloned from a rat brain cDNA library. The complete ORF was then deduced from a DNA fragment cloned from a rat genomic library. This ORF was subcloned into the eukaryotic expression vector p91023(B) under control of the adenovirus major late promoter and co-transfected with the thymidine kinase selection marker into muscarinic receptor-negative, thymidine kinase-negative murine L cells. Stable transformants were selected and tested for acquisition of muscarinic receptors by following appearance of specific binding sites for the muscarinic ligand [3H] N-methylscopolamine. Two cell lines, LM5.36 and LM5.40, were cloned and shown to express typical muscarinic receptor sites, thus confirming that the newly cloned ORF encodes a muscarinic receptor, the rat M5 muscarinic acetylcholine receptor. Tests for activities showed it to stimulate phosphoinositide hydrolysis in intact cells, without affecting positively or negatively adenylyl cyclase activity. The M5 receptor contains two putative glycosylation sites at its amino terminus and, based on hydropathicity analysis, is predicted to span the plasma membrane seven times. Like 17 other receptors of this class, the M5 receptor has 19 conserved amino acids, among which are 4 prolines located in the 4th, 5th, 6th, and 7th predicted transmembrane regions, conferring possible bends to these helices, and 2 cysteines, one in the 1st and the other in the 2nd extracellular loop, possibly providing for a disulfide bond. Similarity in amino acid composition and in patterns of antagonist binding and biologic effects suggest the M5 receptor to be M1-like.  相似文献   

12.
13.
The specific melanocortin receptors, MC3R and MC4R, are directly linked to metabolism and body weight control. These receptors are activated by the peptide hormone alpha-MSH and antagonized by the agouti-related protein (AGRP). Whereas alpha-MSH acts broadly on most members of the MCR family (with the exception of MC2R), AGRP is highly specific for only MC3R and MC4R. AGRP is a complex ligand of approximately 100 amino acids. Within AGRP, MCR recognition and antagonism is localized to a 34 residue, cysteine-rich domain that adopts an inhibitor cystine knot (ICK) fold. An oxidatively folded peptide corresponding to this domain, referred to as mini-AGRP, exhibits full antagonist function and selectivity for MC3R and MC4R. Here we investigate a series of chimera proteins based on the mini-AGRP scaffold. Amino acid sequences derived from peptide agonists are grafted into the mini-AGRP active loop, implicated in receptor recognition, with the goal of producing ICK based agonists specific for MC3R and MC4R. Several constructs indeed exhibited potent agonist activity; however, with all chimeras, receptor selectivity is significantly altered. Pharmacologic data indicate that the chimeras do not interact with MC receptors through native AGRP like contacts. A model to explain the data suggest that there is only partial overlap of the agonist versus antagonist binding surfaces within MC receptors. Moreover, accessibility to the binding pocket is highly receptor specific with MC3R being the least tolerant of ligand alterations.  相似文献   

14.
15.
A Bravo  M Salas 《The EMBO journal》1998,17(20):6096-6105
Protein p1 (85 amino acids) of the Bacillus subtilis phage phi29 is a membrane-associated protein required for in vivo viral DNA replication. In the present study, we have constructed two fusion proteins, maltose-binding protein (MalE)-p1 and MalE-p1DeltaN33. By using both sedimentation assays and negative-stain electron microscopy analysis, we demonstrated that MalE-p1 molecules self-associated into long filamentous structures, which did not assemble further into larger arrays. These structures were constituted by a core of protein p1 surrounded by MalE subunits. After removal of the MalE component by cleavage with protease factor Xa, the resulting protein p1 filaments tended to associate, forming bundles. The MalE-p1DeltaN33 fusion protein, however, did not self-interact in solution. Nevertheless, after being separated from the MalE domain by factor Xa digestion, protein p1DeltaN33 assembled into long protofilaments that associated in a highly ordered, parallel array forming large two-dimensional sheets. These structures resemble eukaryotic tubulin and bacterial FtsZ polymers. In addition, we show that protein p1 influences the rate of in vivo phi29 DNA synthesis in a temperature-dependent manner. We propose that protein p1 is a component of a viral-encoded structure that associates with the bacterial membrane. This structure would provide an anchoring site for the viral DNA replication machinery.  相似文献   

16.
We report here on the cloning and functional characterization of the protein responsible for the system A amino acid transport activity that is known to be expressed in most mammalian tissues. This transporter, designated ATA2 for amino acid transporter A2, was cloned from rat skeletal muscle. It is distinct from the neuron-specific glutamine transporter (GlnT/ATA1). Rat ATA2 consists of 504 amino acids and bears significant homology to GlnT/ATA1 and system N (SN1). ATA2-specific mRNA is ubiquitously expressed in rat tissues. When expressed in mammalian cells, ATA2 mediates Na(+)-dependent transport of alpha-(methylamino)isobutyric acid, a specific model substrate for system A. The transporter is specific for neutral amino acids. It is pH-sensitive and Li(+)-intolerant. The Na(+):amino acid stoichiometry is 1:1. When expressed in Xenopus laevis oocytes, transport of neutral amino acids via ATA2 is associated with inward currents. The substrate-induced current is Na(+)-dependent and pH-sensitive. The amino acid transport system A is particularly known for its adaptive and hormonal regulation, and therefore the successful cloning of the protein responsible for this transport activity represents a significant step toward understanding the function and expression of this transporter in various physiological and pathological states.  相似文献   

17.
The ATP binding cassette (ABC-) transporter mediating the uptake of maltose/maltodextrins in Escherichia coli/Salmonella enterica serovar Typhimurium is one of the best characterized systems and serves as a model for studying the molecular mechanism by which ABC importers exert their functions. The transporter is composed of a periplasmic maltose binding protein (MalE), and a membrane-bound complex (MalFGK(2)), comprising the pore-forming hydrophobic subunits, MalF and MalG, and two copies of the ABC subunit, MalK. We report on the isolation of suppressor mutations within malFG that partially restore transport of a maltose-negative mutant carrying the malK809 allele (MalKQ140K). The mutation affects the conserved LSGGQ motif that is involved in ATP binding. Three out of four suppressor mutations map in periplasmic loops P2 and P1 respectively of MalFG. Cross-linking data revealed proximity of these regions to MalE. In particular, as demonstrated in vitro and in vivo, Gly-13 of substrate-free and substrate-loaded MalE is in close contact to Pro-78 of MalG. These data suggest that MalE is permanently in close contact to MalG-P1 via its N-terminal domain. Together, our results are interpreted in favour of the notion that substrate availability is communicated from MalE to the MalK dimer via extracytoplasmic loops of MalFG, and are discussed with respect to a current transport model.  相似文献   

18.
ABC transporters are ubiquitous membrane proteins that translocate solutes across biological membranes at the expense of ATP. In prokaryotic ABC importers, the extracytoplasmic anchoring of the substrate-binding protein (receptor) is emerging as a key determinant for the structural rearrangements in the cytoplasmically exposed ATP-binding cassette domains and in the transmembrane gates during the nucleotide cycle. Here the molecular mechanism of such signaling events was addressed by electron paramagnetic resonance spectroscopy of spin-labeled ATP-binding cassette maltose transporter variants (MalFGK2-E). A series of doubly spin-labeled mutants in the MalF-P2 domain involving positions 92, 205, 239, 252, and 273 and one triple mutant labeled at positions 205/252 in P2 and 83 in the Q-loop of MalK were assayed. The EPR data revealed that the substrate-binding protein MalE is bound to the transporter throughout the transport cycle. Concomitantly with the three conformations of the ATP-binding cassette MalK2, three functionally relevant conformations are found also in the periplasmic MalF-P2 loop, strictly dependent on cytoplasmic nucleotide binding and periplasmic docking of liganded MalE to MalFG. The reciprocal communication across the membrane unveiled here gives first insights into the stimulatory effect of MalE on the ATPase activity, and it is suggested to be an important mechanistic feature of receptor-coupled ABC transporters.  相似文献   

19.
Neisseria gonorrhoeae ( Ngo ) expressing the outer membrane protein OpaHSPG can adhere to and invade epithelial cells via binding to heparan sulphate proteoglycan (HSPG) receptors. In this study, we have investigated the role of syndecan-1 and syndecan-4, two members of the HSPG family, in the uptake of Ngo by epithelial cells. When overexpressed in HeLa cells, both syndecans co-localize with adherent Ngo on the host cell surface. This overexpression of syndecan-1 and syndecan-4 leads to a three- and sevenfold increase in Ngo invasion respectively. In contrast, transfection with the syndecan-1 and syndecan-4 mutant constructs lacking the intracellular domain results in an abrogation of the invasion process, characteristic of a dominant-negative mode of action. A concomitant loss of the capacity to mediate Ngo uptake was also observed with syndecan-4 mutant constructs carrying lesions in the dimerization motif necessary for the binding of protein kinase C (PKC) and phosphatidylinositol 4,5-bisphosphate (PIP2), and mutants that are deficient in a C-terminal EFYA amino acid motif responsible for binding to syntenin or CASK. We conclude that syndecan-1 and syndecan-4 can both mediate Ngo uptake into epithelial cells, and that their intracellular domains play a crucial role in this process, perhaps by mediating signal transduction or anchorage to the cytoskeleton.  相似文献   

20.
Gonadotropin-releasing hormone (GnRH) is the central regulator of reproduction in vertebrates. GnRHs have recently been identified in protochordates and retain the conserved N- and C-terminal domains involved in receptor binding and activation. GnRHs of the jawed vertebrates have a central achiral amino acid (glycine) that favors a type II' beta-turn such that the N- and C-terminal domains are closely apposed in binding the GnRH receptor. However, protochordate GnRHs have a chiral amino acid in this position, suggesting that they bind their receptors in a more extended form. We demonstrate here that a protochordate GnRH receptor does not distinguish GnRHs with achiral or chiral amino acids, whereas GnRH receptors of jawed vertebrates are highly selective for GnRHs with the central achiral glycine. The poor activity of the protochordate GnRH was increased >10-fold at vertebrate receptors by replacement of the chiral amino acid with glycine or a d-amino acid, which favor the type II' beta-turn. Structural analysis of the GnRHs using ion mobility-mass spectrometry and molecular modeling showed a greater propensity for a type II' beta-turn in GnRHs with glycine or a d-amino acid, which correlates with binding affinity at vertebrate receptors. These findings indicate that the substitution of glycine for a chiral amino acid in GnRH during evolution allows a more constrained conformation for receptor binding and that this subtle single amino acid substitution in a site remote from the ligand functional domains has marked effects on its structure and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号