首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new strategy for dual site-selective labeling of proteins that uses metabolically incorporated selenomethionine as a target for covalent modification by iodoacetamide derivatives, forming selenonium salts, is described. In the absence of free cysteine, labeling is specific and efficient. Dual-targeted labeling of a protein can be achieved with combinations of unique cysteine and methionine residues, if the cysteine is labeled first with a maleimide or another reagent that does not react with the selenomethionine. The method should be useful in biophysical applications such as fluorescence energy transfer.  相似文献   

2.
Benzyl bromide is used as a reagent for the selective modification of methionine residues in proteins. We here explored the suitability of the bromobenzyl moiety as a reactive group for the targeted fluorescent labeling of methionine and selenomethionine residues in proteins. A novel labeling reagent (N,N',N'-trimethyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)- N'-(p-bromomethylbenzyl)-ethylenediamine, NBD-BBr) was synthesized and tested for reactivity with two model proteins containing single methionine or selenomethionine residues. The amounts of reagent and reactions times required for modification of methionine resulted in side reactions with other amino acid residues, a finding which was also confirmed for benzyl bromide itself. However, with selenomethionine, lower concentrations and shorter reaction times were sufficient for NBD-BBr modification. Under these conditions, labeling was confined to selenomethionine residues with one but not the other model protein. Where applicable, the protein labeling strategy characterized here is rapid and efficient. It should be useful in combination with cysteine-specific labeling if dual site-specific modification is desired.  相似文献   

3.
The quantitative analysis of protein mixtures is pivotal for the understanding of variations in the proteome of living systems. Therefore, approaches have been recently devised that generally allow the relative quantitative analysis of peptides and proteins. Here we present proof of concept of the new metal-coded affinity tag (MeCAT) technique, which allowed the quantitative determination of peptides and proteins. A macrocyclic metal chelate complex (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)) loaded with different lanthanides (metal(III) ions) was the essential part of the tag. The combination of DOTA with an affinity anchor for purification and a reactive group for reaction with amino acids constituted a reagent that allowed quantification of peptides and proteins in an absolute fashion. For the quantitative determination, the tagged peptides and proteins were analyzed using flow injection inductively coupled plasma MS, a technique that allowed detection of metals with high precision and low detection limits. The metal chelate complexes were attached to the cysteine residues, and the course of the labeling reaction was followed using SDS-PAGE and MALDI-TOF MS, ESI MS, and inductively coupled plasma MS. To limit the width in isotopic signal spread and to increase the sensitivity for ESI analysis, we used the monoisotopic lanthanide macrocycle complexes. Peptides tagged with the reagent loaded with different metals coelute in liquid chromatography. In first applications with proteins, the calculated detection limit for bovine serum albumin for example was 110 amol, and we have used MeCAT to analyze proteins of the Sus scrofa eye lens as a model system. These data showed that MeCAT allowed quantification not only of peptides but also of proteins in an absolute fashion at low concentrations and in complex mixtures.  相似文献   

4.
Shotgun proteomics is capable of characterizing differences in both protein quality and quantity, and has been applied in various biomedical applications. Unfortunately, the high complexity and dynamic range of proteins in studied samples, clinical in particular, often hinders the identification of relevant proteins. Indeed, information-rich, low abundance proteins often remain undetected, whereas repeatedly reported altered concentrations in high abundance proteins are often ambiguous and insignificant. Several techniques have therefore been developed to overcome this obstacle and provide a deeper insight into the proteome. Here we report a novel approach, which enables iTRAQ reagent quantitation of peptides fractionated based on presence of a cysteine residue (thus CysTRAQ). For the first time, we prove that iTRAQ quantitation is fully compatible with cysteinyl peptide enrichment and is not influenced by the fractionation process. Moreover, the employment of the method combined with high-resolution TripleTOF 5600 mass spectrometer for very fast MS/MS acquisition in human amniotic fluid analysis significantly increased the number of identified proteins, which were simultaneously quantified owing to the introduction of iTRAQ labeling. We herein show that CysTRAQ is a robust and straightforward method with potential application in quantitative proteomics experiments, i.e. as an alternative to the ICAT reagent approach.  相似文献   

5.
Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.  相似文献   

6.
The reagent p-fluorobenzenesulfonyl chloride modifies the protein side chains of tyrosine, lysine, and histidine and the alpha-NH2 group. The p-fluorobenzenesulfonyl (Fbs-) group, identified by the 19F nuclear magnetic resonance signal, exhibits a different 19F chemical shift for each functional group modified. The Fourier-transformed spectra of the Fbs- group displayed the expected nine-line multiplet in Fbs- amino acids and simple Fbs- peptides but not in the Fbs- proteins, where the resolution was less. Lysozyme, RNase, DNase, and chymotrypsin react with this reagent and each Fbs- protein exhibits a distinctive pattern of 19F NMR signals due to the label, suggesting that the reaction of the reagent varies with the reactivity of the side chains in a protein. The three major 19F signals of the unfolded Fbs-RNase in 8 M urea are due to the Fbs- label on the imidazolium, alpha-NH2, and epsilon-NH2 groups. Based upon results from amino acid and 19F NMR analyses of the tryptic-chymotryptic peptides of Fbs-RNase, portions of the imidazolium and epsilon-NH2 resonances were assigned to the Fbs- label on His-105 and Lys-41, respectively, while the alpha-NH2 resonance was entirely due to the Fbs- label on the alpha-NH2 of Lys-1. Because Fbs-RNase has an unchanged, near-ultraviolet circular dichroism spectrum and because it retains approximately 80% of the RNase activity, the conformation of Fbs-RNase is probably not altered from the folded conformation of the native enzyme. Upon unfolding in 8 M urea or heating at 70 degrees C, Fbs-RNase gave a 19F NMR spectrum differing from that of the folded Fbs-RNase. In the presence of uridylic acid, Lys-41 was the only residue protected from modification by the reagent with a concomitant reduction of the epsilon-NH2 resonance, and the RNase thus modified was fully active. Hence, 19F NMR analysis of protein, via the reaction with p-fluorobenzenesulfonyl chloride, provided not only information about the protein conformation but also direct measurements of the modification status.  相似文献   

7.
The combination of isotope coded affinity tag (ICAT) reagents and tandem mass spectrometry constitutes a new method for quantitative proteomics. It involves the site-specific, covalent labeling of proteins with isotopically normal or heavy ICAT reagents, proteolysis of the combined, labeled protein mixture, followed by the isolation and mass spectrometric analysis of the labeled peptides. The method critically depends on labeling protocols that are specific, quantitative, general, robust, and reproducible. Here we describe the systematic evaluation of important parameters of the labeling protocol and describe optimized labeling conditions. The tested factors include the ICAT reagent concentration, the influence of the protein, SDS, and urea concentrations on the labeling reaction, and the reaction time. We demonstrate that using the optimized conditions specific and quantitative labeling was achieved on standard proteins as well as in complex protein mixtures such as a yeast cell lysate.  相似文献   

8.
A novel class of isotope-coded affinity tag is proposed possessing a fluorescent feature, referred to as fluorescent isotope-coded affinity tag (FCAT), to provide a new tool for quantitative proteomics. The label is designed to bind cysteine containing proteins or peptides. The FCAT reagent comprises four functional elements: a specific chemical reactivity group toward sulfhydryl groups; a linker that can incorporate the stable isotopes; a hydroxymethylbenzoic residue (base labile group) to cleave off a large part of the label before MS analysis; and a fluorescent tag for absolute quantification. The fluorescent part of the tag is also planned to be utilized to isolate the FCAT-labeled peptides via antibody based pull-down method. In this paper, we report on the solid phase organic synthesis of the light isotope containing FCAT molecule. The new labeling reagent showed good reactivity with model cysteine containing peptides. The fluorophore group was also effectively cleaved off from the labeled products to accommodate easier MS based analysis.  相似文献   

9.
Ribonuclease inhibitor (RI) is a protein that forms a very tight complex with ribonucleases (RNases) of the pancreatic type. RI contains 30 thiol groups, some of which are important for the enzyme-inhibitor interaction. To examine which thiols are affected by the binding of RNase, differential labeling experiments were performed. Reaction of porcine RI with the cysteine-specific labeling reagent 4-N,N-dimethylaminoazobenzene-4'-iodoacetamido-2'-sulfonic acid resulted in labeling of an average of 7.4 of the 30 cysteinyl residues. Binding of bovine pancreatic RNase A caused a 3.2-fold reduction in the extent of modification. Peptide mapping showed that in free RI, Cys-57, -371, and -404 were labeled to the greatest extent (yield, 0.4-0.6 mol/mol). RNase A did not protect Cys-57 against modification, whereas the labeling of Cys-371 and -404 was reduced by more than 90%. A second group of residues was labeled to a lesser extent in free RI (yield, 0.04-0.2 mol/mol). Within this group 11 residues were protected by RNase A by more than 90%, 2 were not affected at all, and 7 were protected between 10 and 90%. Seven cysteinyl residues in RI that were protected in the RI.RNase A complex were no longer protected in the RI.S-protein complex. These residues were mainly present in the N-terminal region of RI. However, when the S-peptide was included to yield the RI.RNase S complex, the same pattern of labeling was obtained as with the RI.RNase A complex. Addition of the S-peptide alone had no effect on the labeling. The implications of these observations with respect to RNase binding areas of RI are discussed in relation to the results obtained from the analysis of active RI molecules that contain deletions.  相似文献   

10.
11.
For tracer or analytical studies it is often useful to label proteins by direct iodination or by reacting them with an iodinated reagent. A simple iodination technique with hydrogen peroxide is described for use with either carrier-free or low-specific-activity iodine. The method introduces less oxidative damage to proteins than any other procedure tested, yet the efficiency of labeling approaches that offered by the chloramine T or Iodogen methods. The method has been applied to the facile and inexpensive preparation of the iodinated Bolton-Hunter reagent. This peroxide iodination procedure should be particularly useful for labeling proteins or peptides for structural investigations or for immunoassays.  相似文献   

12.
For tracer or analytical studies it is often useful to label proteins by direct iodination or by reacting them with an iodinated reagent. A simple iodination technique with hydrogen peroxide is described for use with either carrier-free or low-specific-activity iodine. The method introduces less oxidative damage to proteins than any other procedure tested, yet the efficiency of labeling approaches that offered by the chloramine T or Iodogen methods. The method has been applied to the facile and inexpensive preparation of the iodinated Bolton-Hunter reagent. This peroxide iodination procedure should be particularly useful for labeling proteins or peptides for structural investigations or for immunoassays.  相似文献   

13.
The spin-labeling reagent, N4-(9'-fluorenylmethyloxycarbonyl)-4-amino-1-oxyl-4-succinimidyloxyca rbonyl- 2,2,6,6-tetramethylpiperidine, and the same enriched in 14C at the 4-formyl group, were synthesized as new acylating compounds for protein amino groups that can preserve charge. Porcine testicular calmodulin was modified with this reagent at pH 7.8 in the presence of Ca2+ under conditions that yielded a fairly homogeneous derivative as judged by electrophoretic analysis and tryptic digestion patterns. The tryptic peptides were separated by gel filtration and reverse-phase high-performance liquid chromatography, and the resulting, highly purified 14C-labeled peptides were hydrolyzed and their amino acid compositions determined. The results indicate that at least 87% of the modifications occur at lysyl residues 75 and 148, and the former appears to be the most reactive. This bilabeled calmodulin adduct does not activate a bovine brain cyclic nucleotide phosphodiesterase preparation. The fluorenylmethyloxycarbonyl portion of this inactive calmodulin derivative can, however, be removed by conditions that do not diminish native calmodulin activity in the phosphodiesterase assay. The resulting calmodulin adduct is active in the enzymic assay, although with diminished potency compared to calmodulin. The specificity of the reaction of this acylating reagent with calmodulin may be due to recognition of the tricyclic fluorene ring by the phenothiazine-binding sites since it was found that trifluoperazine inhibited the labeling reaction. Also, calmodulin was far more reactive to this reagent than were several other proteins. This is the first report of a specific, characterized lysine modification on calmodulin, and it is possible that other phenothiazine-binding proteins may also exhibit similar selectivity for acylation. Electron paramagnetic resonance spectra of the calmodulin adducts suggest a high degree of spin immobilization in both the Ca2+-free and Ca2+-saturated states.  相似文献   

14.
A new method is described for the selective 'in synthesis' labeling of peptides by rhodamine or biotin at a single, predetermined epsilon-amino group of a lysine residue. The alpha-amino group and other lysyl residues of the peptide remain unmodified. Peptides are assembled by the Fmoc approach, which requires mild operative conditions for the final deprotection and cleavage, and ensures little damage of the reporter group. The labeling technique involves the previous preparation of a suitable Lysine derivative, easily obtained from commercially-available protected amino acids. This new derivative, where the reporter group (biotin, or rhodamine) acts now as permanent protection of lysyl side chain functions, is then inserted into the synthesis program as a conventional protected amino acid, and linked to the preceding residue by aid of carbodiimide. A simpler, alternative method is also described for the selective 'in synthesis' labeling of peptides with N-terminal lysyl residues. Several applications of labeled peptides are reported.  相似文献   

15.
Procedures for chemical modification of bovine pancreatic trypsin inhibitor (BPTI) to allow site-specific coupling of immunogenic peptides are reported. Each of the modified proteins has a single free amino group; the other amino groups of lysine or the amino terminus are blocked by acetylation or guanidination. Two of the derivatives were prepared by protecting Lys-15 by complexation with trypsin or chymotrypsin during acetylation with N-hydroxysuccinimide acetate or guanidination with 3,5-dimethylpyrazole-1-carboxamidine nitrate. A third derivative with a free amino group at the amino terminus was prepared by guanidination of the 4 lysine residues with o-methylisourea. The purity and structural integrity of the modified proteins was checked by NMR spectroscopy. Cysteine-containing peptides can be coupled to the single free amino group using several heterobifunctional linking reagents. N-Succinimidyl 3-(2-pyridyldithio)propionate is the most satisfactory coupling reagent for NMR studies because of its high specificity. Two-dimensional NMR spectroscopy shows that the conformation of the modified proteins is almost identical with that of native BPTI. The BPTI derivatives are suitable for use as models for NMR investigations of the conformation of immunogenic peptides conjugated to a carrier protein.  相似文献   

16.
We present the design and synthesis of a new quantitative strategy termed soluble polymer-based isotope labeling (SoPIL) and its application as a novel and inclusive method for the identification and relative quantification of individual proteins in complex snake venoms. The SoPIL reagent selectively captures and isolates cysteine-containing peptides, and the subsequent tagged peptides are released and analyzed using nanoflow liquid chromatography-tandem mass spectrometry. The SoPIL strategy was used to quantify venom proteins from two pairs of venomous snakes: Crotalus scutulatus scutulatus type A, C. scutulatus scutulatus type B, Crotalus oreganus helleri, and Bothrops colombiensis. The hemorrhagic, hemolytic, clotting ability, and fibrinogenolytic activities of crude venoms were measured and correlated with difference in protein abundance determined by the SoPIL analysis. The SoPIL approach could provide an efficient and widely applicable tool for quantitative proteomics.  相似文献   

17.
A novel, MS-based approach for the relative quantification of proteins, relying on the derivatization of primary amino groups in intact proteins using isobaric tag for relative and absolute quantitation (iTRAQ) is presented. Due to the isobaric mass design of the iTRAQ reagents, differentially labeled proteins do not differ in mass; accordingly, their corresponding proteolytic peptides appear as single peaks in MS scans. Because quantitative information is provided by isotope-encoded reporter ions that can only be observed in MS/MS spectra, we analyzed the fragmentation behavior of ESI and MALDI ions of peptides generated from iTRAQ-labeled proteins using a TOF/TOF and/or a QTOF instrument. We observed efficient liberation of reporter ions for singly protonated peptides at low-energy collision conditions. In contrast, increased collision energies were required to liberate the iTRAQ label from lysine side chains of doubly charged peptides and, thus, to observe reporter ions suitable for relative quantification of proteins with high accuracy. We then developed a quantitative strategy that comprises labeling of intact proteins by iTRAQ followed by gel electrophoresis and peptide MS/MS analyses. As proof of principle, mixtures of five different proteins in various concentration ratios were quantified, demonstrating the general applicability of the approach presented here to quantitative MS-based proteomics.  相似文献   

18.
Thermal proteome profiling is a powerful energetic‐based chemical proteomics method to reveal the ligand‐protein interaction. However, the costly multiplexed isotopic labeling reagent, mainly Multiplexed isobaric tandem mass tag (TMT), and the long mass spectrometric time limits the wide application of this method. Here a simple and cost‐effective strategy by using dimethyl labeling technique instead of TMT labeling is reported to quantify proteins and by using the peptides derived from the same protein to determine significantly changed proteins in one LC‐MS run. This method is validated by identifying the known targets of methotrexate and geldanamycin. In addition, several potential off‐targets involved in detoxification of reactive oxygen species pathway are also discovered for geldanamycin. This method is further applied to map the interactome of adenosine triphosphate (ATP) in the 293T cell lysate by using ATP analogue, adenylyl imidodiphosphate (AMP‐PNP), as the ligand. As a result, a total of 123 AMP‐PNP‐sensitive proteins are found, of which 59 proteins are stabilized by AMP‐PNP. Approximately 53% and 20% of these stabilized candidate protein targets are known as ATP and RNA binding proteins. Overall, above results demonstrated that this approach could be a valuable platform for the unbiased target proteins identification with reduced reagent cost and mass spectrometric time.  相似文献   

19.
A novel isotopically labeled cysteine-tagging and complexity-reducing reagent, called HysTag, has been synthesized and used for quantitative proteomics of proteins from enriched plasma membrane preparations from mouse fore- and hindbrain. The reagent is a 10-mer derivatized peptide, H(2)N-(His)(6)-Ala-Arg-Ala-Cys(2-thiopyridyl disulfide)-CO(2)H, which consists of four functional elements: i) an affinity ligand (His(6)-tag), ii) a tryptic cleavage site (-Arg-Ala-), iii) Ala-9 residue that contains four (d(4)) or no (d(0)) deuterium atoms, and iv) a thiol-reactive group (2-thiopyridyl disulfide). For differential analysis cysteine residues in the compared samples are modified using either (d(4)) or (d(0)) reagent. The HysTag peptide is preserved in Lys-C digestion of proteins and allows charge-based selection of cysteine-containing peptides, whereas subsequent tryptic digestion reduces the labeling group to a di-peptide, which does not hinder effective fragmentation. Furthermore, we found that tagged peptides containing Ala-d(4) co-elute with their d(0)-labeled counterparts. To demonstrate effectiveness of the reagent, a differential analysis of mouse forebrain versus hindbrain plasma membranes was performed. Enriched plasma membrane fractions were partially denatured, reduced, and reacted with the reagent. Digestion with endoproteinase Lys-C was carried out on nonsolubilized membranes. The membranes were sedimented by ultra centrifugation, and the tagged peptides were isolated by Ni(2+) affinity or cation-exchange chromatography. Finally, the tagged peptides were cleaved with trypsin to release the histidine tag (residues 1-8 of the reagent) followed by liquid chromatography tandem mass spectroscopy for relative protein quantification and identification. A total of 355 unique proteins were identified, among which 281 could be quantified. Among a large majority of proteins with ratios close to one, a few proteins with significant quantitative changes were retrieved. The HysTag offers advantages compared with the isotope-coded affinity tag reagent, because the HysTag reagent is easy to synthesize, economical due to use of deuterium instead of (13)C isotope label, and allows robust purification and flexibility through the affinity tag, which can be extended to different peptide functionalities.  相似文献   

20.
Iodination is a very useful method for protein characterization and labeling. However, derivatization chemistries used in most conventional iodination procedures may cause substantial alterations in protein structure and function. The IPy(2)BF(4) reagent [bis(pyridine)iodonium (I) tetrafluoroborate] has been shown to be an effective iodinating reagent for peptides. Herein we report the first application of IPy(2)BF(4) in protein iodination in an aqueous medium using three representative substrates: insulin, lysozyme, and the enzyme 1,3-1,4-beta-d-4-glucanohydrolase. Our results show that IPy(2)BF(4) has clear advantages over existing methods in that the reaction is quantitative, fast, and selective for the most accessible Tyr residues of a protein, and it preserves the functional integrity of the protein when moderate Tyr labeling levels are pursued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号