首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dysregulated epidermal growth factor receptor (EGFR) signaling through either genomic amplification or dominant-active mutation (EGFR(vIII)), in combination with the dual inactivation of INK4A/ARF and PTEN, is a leading cause of gliomagenesis. Our global expression analysis for microRNAs revealed that EGFR activation induces miR-146a expression, which is further potentiated by inactivation of PTEN. Unexpectedly, overexpression of miR-146a attenuates the proliferation, migration, and tumorigenic potential of Ink4a/Arf(-/-) Pten(-/-) Egfr(vIII) murine astrocytes. Its ectopic expression also inhibits the glioma development of a human glioblastoma cell line in an orthotopic xenograft model. Such an inhibitory function of miR-146a on gliomas is largely through downregulation of Notch1, which plays a key role in neural stem cell maintenance and is a direct target of miR-146a. Accordingly, miR-146a modulates neural stem cell proliferation and differentiation and reduces the formation and migration of glioma stem-like cells. Conversely, knockdown of miR-146a by microRNA sponge upregulates Notch1 and promotes tumorigenesis of malignant astrocytes. These findings indicate that, in response to oncogenic cues, miR-146a is induced as a negative-feedback mechanism to restrict tumor growth by repressing Notch1. Our results provide novel insights into the signaling pathways that link neural stem cells to gliomagenesis and may lead to new strategies for treating brain tumors.  相似文献   

3.
目的:通过敲低微小RNA (microRNA,miRNA)-449a的方法研究miR-449a对人乳腺癌细胞MCF-7的增殖和迁移能力的影响。方法:采用miRNA芯片在乳腺癌细胞MCF-7和人正常乳腺细胞MCF-10A筛选具有表达差异的miRNA;化学合成法制备miR-449a的抑制剂(inhibitor),转染后经real-time PCR验证表达的变化;细胞增殖CCK-8实验对转染后细胞增殖能力进行检测;划痕实验检测细胞转移能力,transwell小室实验检测细胞侵袭的改变;蛋白免疫印迹法(Western blot)实验对MCF-7细胞增殖和迁移相关的β-catenin和E-cadherin蛋白进行检测;通过生物信息学软件预测miR-449a潜在靶基因为Notch 1,荧光素酶实验检测Notch 1是miR-449a的靶基因。结果:分别收集MCF-7和MCF-10A细胞,芯片结果显示miR-449a在MCF-7细胞的表达水平显著高于MCF-10A;本研究将细胞分为未处理组(Mock组),阴性对照组(negative control组,NC组)和处理组,通过收集不同组MCF-7细胞进行试验,CCK-8结果显示miR-449a下调后MCF-7细胞增殖能力显著降低;划痕实验结果显示miR-449a表达降低导致MCF-7细胞转移能力降低;transwell实验结果显示MCF-7细胞侵袭受到抑制;Western blot结果发现miR-449a敲低后β-catenin表达降低,E-cadherin表达增加;荧光素酶试验结果显示,miR-449a能够显著降低Notch 1-3'-UTR质粒的荧光素活性(P<0.01)。结论:在乳腺癌细胞MCF-7中敲低miR-449a能够显著抑制癌细胞增殖和迁移,而这一变化可能通过降低Notch 1蛋白表达实现的。  相似文献   

4.
Preeclampsia (PE), a common disorder of pregnancy, is characterized by insufficient trophoblast migration and inadequate vascular remodelling, such that promotion of trophoblast proliferation might ameliorate PE. In the current study, we sought to study the underlying mechanism of extracellular vesicle (EV)-derived microRNA-18 (miR-18b) in PE. Human umbilical cord mesenchymal stem cells (HUCMSCs) isolated from placental tissues were verified through osteogenic, adipogenic and chondrogenic differentiation assays. Bioinformatics analyses and dual-luciferase reporter gene assay were adopted to confirm the targeting relationship between miR-18b and Notch2. The functional roles of EV-derived miR-18b and Notch2 in trophoblasts were determined using loss- and gain-of-function experiments, and trophoblast proliferation and migration were assayed using CCK-8 and Transwell tests. In vivo experiments were conducted to determine the effect of EV-derived miR-18b, Notch2 and TIM3/mTORC1 in a rat model of PE, with monitoring of blood pressure and urine proteinuria. TUNEL staining was conducted to observe the cell apoptosis of placental tissues of PE rats. We found down-regulated miR-18b expression, and elevated Notch2, TIM3 and mTORC1 levels in the placental tissues of PE patients compared with normal placenta. miR-18b was delivered to trophoblasts and targeted Notch2 and negatively its expression, whereas Notch2 positively mediated the expression of TIM3/mTORC1. EV-derived miR-18b or Notch2 down-regulation enhanced trophoblast proliferation and migration in vitro and decreased blood pressure and 24 hours urinary protein in PE rats by deactivating the TIM3/mTORC1 axis in vivo. In summary, EV-derived miR-18b promoted trophoblast proliferation and migration via down-regulation of Notch2-dependent TIM3/mTORC1.  相似文献   

5.
Cervical cancer (CC) is a common gynecological cancer and a leading cause of cancer-related deaths in women globally. Therefore, this study explores the action of microRNA-205 (miR-205) in the invasion, migration, and angiogenesis of CC through binding to tumor suppressor lung cancer 1 (TSLC1). Initially, the microarray analysis was used to select the candidate gene and the regulatory microRNA. Then, the target relationship between miR-205 and TSLC1 as well as the expression of miR-205, TSLC1, and p-Akt/total Akt in CC cells were determined. Afterwards, CC cell invasion and migration were detected after the treatment of miR-205 mimics/inhibitors and short hairpin RNA against TSLC1. After coculture of cancer cells and vascular endothelial cells, cell proliferation, tube formation, and microvessel density (MVD) were detected to determine the roles of miR-205 in angiogenesis. Finally, tumor growth in nude mice was measured in vivo. TSLC1 was determined as the candidate gene, which was found to be targeted and negatively regulated by miR-205. Then, downregulated miR-205 or forced TSLC1 expression inhibited invasion, migration, and angiogenesis in CC, corresponding to suppressed cell proliferation, tube formation, and expression of IL-8, VEGF, and bFGF, as well as the inhibited activation of the Akt signaling pathway. Furthermore, downregulation of miR-205 was found to exert an inhibitory role in tumor formation and MVD by elevating TSLC1 in CC in vivo. This study demonstrated that downregulated miR-205 inhibited cell invasion, migration, and angiogenesis in CC by inactivating the Akt signaling pathway via TSLC1 upregulation.  相似文献   

6.
The epidermal growth factor (EGF) is responsible for the activation of intracellular signal transducers that act on cell-cycle progression, cell motility, angiogenesis and inhibition of apoptosis. However, cells can block these effects activating opposite signaling pathways, such as the transforming growth factor beta 1 (TGFβ1) pathway. Thus changes in expression levels of EGF and TGFB1 in renal cells might modulate the renal cell carcinoma (RCC) development, in consequence of changes in regulatory elements of signaling networks such as the microRNAs (miRNAs). Our purpose was to investigate the synergic role of EGF+61G>A and TGFB1+869T>C polymorphisms in RCC development. Genetic polymorphisms were studied by allelic discrimination using real-time PCR in 133 RCC patients vs. 443 healthy individuals. The circulating EGF/EGFR-MAPK-related miR-7, miR-221 and miR-222 expression was analyzed by a quantitative real-time PCR in plasma from 22 RCC patients vs. 27 healthy individuals. The intermediate/high genetic proliferation profile patients carriers present a significantly reduced time-to-progression and a higher risk of an early relapse compared with the low genetic proliferation profile carriers (HR = 8.8, P = 0.038) with impact in a lower overall survival (Log rank test, P = 0.047). The RCC patients presented higher circulating expression levels of miR-7 than healthy individuals (6.1-fold increase, P<0.001). Moreover, the intermediate/high genetic proliferation profile carriers present an increase in expression levels of miR-7, miR-221 and miR-222 during the RCC development and this increase is not observed in low genetic proliferation profile (P<0.001, P = 0.004, P<0.001, respectively). The stimulus to angiogenesis, cell-cycle progression and tumoral cells invasion, through activation of EGFR/MAPK signaling pathway in intermediate/high proliferation profile carriers is associated with an early disease progression, resulting in a poor overall survival. We also demonstrated that the intermediate/high proliferation profile is an unfavorable prognostic factor of RCC and miR-7, miR-221 and miR-222 expressions may be useful phenotype biomarkers of EGFR/MAPK activation.  相似文献   

7.
8.
9.
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging malignancy due to distant metastasis. RELA, a major component of the NF-κB pathway, could serve as an oncogene through activating proliferation or migration-related gene expression, including NEAT1, a well-known oncogenic long noncoding RNA. In the current study, the expression and function of RELA and NEAT1 in PDAC were examined. The potential upstream regulatory microRNAs of RELA were screened and verified for their correlation with RELA and NEAT1. The expression and function of the selected miR-302a-3p were evaluated. RELA and NEAT1 expression were upregulated in PDAC tissues, particularly in PDAC tissues with lymph node metastasis, and their expression correlated with clinical parameters. RELA overexpression promoted PDAC cell proliferation and migration, which could be partially attenuated by the NEAT1 knockdown. By binding to RELA, miR-302a-3p inhibited RELA expression, as well as PDAC cell proliferation and migration. RELA downstream NEAT1 expression was negatively regulated by miR-302a-3p; the suppressive effect of NEAT1 knockdown on PDAC cell proliferation and migration was partially attenuated by miR-302a-3p inhibition. Moreover, through direct binding, the expression of miR-302a-3p was also negatively regulated by NEAT1. The expression of miR-302a-3p was downregulated and negatively correlated with RELA or NEAT1 in tissue samples, indicating that rescuing miR-302a-3p expression may inhibit PDAC cell proliferation and migration through RELA/NEAT1. In summary, RELA, NEAT1, and miR-302a-3p form a feedback loop in PDAC to modulate PDAC cell proliferation and migration.  相似文献   

10.

Background

Gliomas are the most common primary tumors in the central nervous system. Due to complicated signaling pathways involved in glioma progression, effective targets for treatment and biomarkers for prognosis prediction are still scant.

Results

In this study we revealed that a new microRNA (miR), the miR-221, was highly expressed in the glioma cells, and suppression of miR-221 resulted in decreased cellular proliferation, migration, and invasion in glioma cells. Mechanistic experiments validated that miR-221 participates in regulating glioma cells proliferation and invasion via suppression of a direct target gene, the Semaphorin 3B (SEMA3B). The rescue experiment with miR-221 and SEMA3B both knockdown results in significant reversion of miR-221 induced phenotypes.

Conclusion

Taken together, our findings highlight an unappreciated role for miR-221 and SEMA3B in glioma.  相似文献   

11.
12.
Breast cancer (BC) is known as the most deadly cancer among females, worldwide. Despite the research advances in this regard, effective diagnosis and treatment still have a long way to go. In this study, our stance was to investigate the regulatory mechanism of miR-190 on epithelial-mesenchymal transition (EMT) and angiogenesis via mediation of protein kinase B (AKT)-extracellular signal-regulated kinase (ERK) signaling pathway by targeting stanniocalicin 2 (STC2) in BC. The BC gene chip was retrieved with differentially expressed genes (DEGs) obtained. MDA-MB-231 and T47D cell lines were selected and separately introduced with miR-190 inhibitors, activators, and small interfering RNAs with the intent of exploring the regulatory functions that miR-190 has shown while governing STC2 in BC. The regulatory effect of miR-190 on cell proliferation, migration, invasion, and angiogenesis was evaluated, followed by determination of AKT-ERK signaling pathway-related factors, EMT-related factors, and angiogenesis-related factors. The xenograft tumor of nude mice was also implemented for determining the change of tumor after transfection. The GSE26910 gene chip was obtained with STC2 being selected as the potential DEG. STC2 was the target gene of miR-190. The results showed that cells introduced with the miR-190 activators along with small interfering RNA-STC2 inhibited proliferation, invasion, migration, angiogenesis, as well as EMT. Moreover, the in vivo experiment also went on to confirm that the tumor volume had significantly increased in the nude mice along with an elevated expression of miR-190. Collectively, the findings suggested that overexpression of miR-190 inhibited EMT and angiogenesis by inactivating AKT-ERK signaling pathway via STC2 in BC.  相似文献   

13.
Hepatocellular carcinoma (HCC), as the third leading cancer-caused deaths, prevails with high mortality, and affects more than half a million individuals per year worldwide. A former study revealed that microRNA-221 (miR-221) was involved in cell proliferation of liver cancer and HCC development. The current study aims to evaluate whether miR-221 targeting SOCS3 affects HCC through JAK–STAT3 signaling pathway. A series of miR-221 mimic, miR-221 inhibitor, siRNA against SOCS3, and SOCS3 plasmids were introduced to SMMC7721 cells with the highest miR-221 expression assessed. The expression of JAK–STAT3 signaling pathway–related genes and proteins was determined by Western blot analysis. Cell apoptosis, viability, migration, and invasion were evaluated by means of flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide, and transwell assays, respectively. HCC xenograft in nude mice was performed to measure HCC tumor growth. miR-221 was found to be highly expressed but SOCS3 was poorly expressed in HCC tissues. miR-221 expression was correlated with lymph node metastasis (LNM) and tumor node metastasis (TNM) of HCC, and SOCS3 expression was correlated with LNM, differentiation and TNM of HCC. SOCS3 is a target gene of miR-221. MiR-221 mimic or si-SOCS3 exposure was found to induce cell viability, migration, and invasion, and reduce apoptosis. MiR-221 inhibitor was observed to have inhibitory effects on HCC cell proliferation, migration, and invasion. Moreover, the expression of JAK–STAT3 signaling pathway was suppressed by miR-221 inhibitor. Downregulated miR-221 expression could promote its target gene SOCS3 to inhibit the proliferation, invasion and migration of HCC cells by repressing JAK–STAT3 signaling pathway.  相似文献   

14.
Postembryonic angiogenesis is mainly induced by various proangiogenic factors derived from the original vascular network. Previous studies have shown that the role of Ang-2 in angiogenesis is controversial. Tip cells play a vanguard role in angiogenesis and exhibit a transdifferentiated phenotype under the action of angiogenic factors. However, whether Ang-2 promotes the transformation of endothelial cells to tip cells remains unknown. Our study found that miR-221-3p was highly expressed in HCMECs cultured for 4 h under hypoxic conditions (1% O2). Moreover, miR-221-3p overexpression inhibited HCMECs proliferation and tube formation, which may play an important role in hypoxia-induced angiogenesis. By target gene prediction, we further demonstrated that Ang-2 was a downstream target of miR-221-3p and miR-221-3p overexpression inhibited Ang-2 expression in HCMECs under hypoxic conditions. Subsequently, qRT-PCR and western blotting methods were performed to analyse the role of miR-221-3p and Ang-2 on the regulation of tip cell marker genes. MiR-221-3p overexpression inhibited CD34, IGF1R, IGF-2 and VEGFR2 proteins expression while Ang-2 overexpression induced CD34, IGF1R, IGF-2 and VEGFR2 expression in HCMECs under hypoxic conditions. In addition, we further confirmed that Ang-2 played a dominant role in miR-221-3p inhibitors promoting the transformation of HCMECs to tip cells by using Ang-2 shRNA to interfere with miR-221-3p inhibitor-treated HCMECs under hypoxic conditions. Finally, we found that miR-221-3p expression was significantly elevated in both serum and myocardial tissue of AMI rats. Hence, our data showed that miR-221-3p may inhibit angiogenesis after acute myocardial infarction by targeting Ang-2 to inhibit the transformation of HCMECs to tip cells.  相似文献   

15.
16.
17.
18.
19.
20.
《Genomics》2019,111(6):1862-1872
BackgroundHepatocellular carcinoma (HCC) is one of the main causes of cancer-related death. This study aims to explore the role and underlying mechanism of H19 in HCC.MethodsqRT-PCR detected miR-15b-5p and H19 expression, as well as the mRNA level of EMT-associated genes. Western blotting detected protein level of EMT-associated genes. Immunohistochemistry (IHC) examined CDC42 in HCC tissues. Dual luciferase reporter assay verified the regulatory mechanism among H19, miR-15b and CDC42. Colony formation, wound healing assay, transwell, flow cytometry measured proliferation, migration, invasion and apoptosis, respectively.ResultsH19 and CDC42 were up-regulated while miR-15b was down-regulated in HCC cells and tissues. miR-15b interacted with H19 and CDC42 3′-UTR. H19 knockdown inhibited proliferation, migration and invasion, and increased apoptosis, which was rescued by miR-15b inhibitor. H19 knockdown suppressed CDC42/PAK1 pathway and EMT progress.ConclusionH19 knockdown inhibited proliferation, migration and invasion, and promoted apoptosis of HCC cells via targeting miR-15b/CDC42/PAK1 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号