首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, much effort has been devoted to understanding the three-dimensional (3D) organization of the genome and how genomic structure mediates nuclear function. The development of experimental techniques that combine DNA proximity ligation with high-throughput sequencing, such as Hi-C, have substantially improved our knowledge about chromatin organization. Numerous experimental advancements, not only utilizing DNA proximity ligation but also high-resolution genome imaging (DNA tracing), have required theoretical modeling to determine the structural ensembles consistent with such data. These 3D polymer models of the genome provide an understanding of the physical mechanisms governing genome architecture. Here, we present an overview of the recent advances in modeling the ensemble of 3D chromosomal structures by employing the maximum entropy approach combined with polymer physics. Particularly, we discuss the minimal chromatin model (MiChroM) along with the “maximum entropy genomic annotations from biomarkers associated with structural ensembles” (MEGABASE) model, which have been remarkably successful in the accurate modeling of chromosomes consistent with both Hi-C and DNA-tracing data.  相似文献   

2.
The tertiary structure of the DNA that makes up the eukaryotic genome is remarkably plastic, taking many different forms in response to the different needs of the cell. During the cell cycle of one cell, the DNA is replicated, reorganized into mitotic chromosomes, and decondensed into interphase chromatin. Within one cell at any given point in time, the chromatin is divided into hetero- and euchromatin reflecting active and inactive states of the DNA. This organization varies within one organism since different parts of the genome are active in different cell types. This article focuses on the most dramatic cell-type-specific DNA organization, that found in spermatozoa, in which the entire genome is reorganized into an inactive state that is more highly condensed than mitotic chromosomes. This unique example of eukaryotic DNA organization offers some interesting clues to the still unanswered questions about the role that the three-dimensional packaging of DNA plays in its function. © 1994 Wiley-Liss, Inc.  相似文献   

3.
The linear sequence of genomes exists within the three-dimensional space of the cell nucleus. The spatial arrangement of genes and chromosomes within the interphase nucleus is nonrandom and gives rise to specific patterns. While recent work has begun to describe some of the positioning patterns of chromosomes and gene loci, the structural constraints that are responsible for nonrandom positioning and the relevance of spatial genome organization for genome expression are unclear. Here we discuss potential functional consequences of spatial genome organization and we speculate on the possible molecular mechanisms of how genomes are organized within the space of the mammalian cell nucleus.  相似文献   

4.
Locey KJ  White EP 《PloS one》2011,6(2):e14651

Background

The study of large-scale genome structure has revealed patterns suggesting the influence of evolutionary constraints on genome evolution. However, the results of these studies can be difficult to interpret due to the conceptual complexity of the analyses. This makes it difficult to understand how observed statistical patterns relate to the physical distribution of genomic elements. We use a simpler and more intuitive approach to evaluate patterns of genome structure.

Methodology/Principal Findings

We used randomization tests based on Morisita''s Index of aggregation to examine average differences in the distribution of purines and pyrimidines among coding and noncoding regions of 261 chromosomes from 223 microbial genomes representing 21 phylum level groups. Purines and pyrimidines were aggregated in the noncoding DNA of 86% of genomes, but were only aggregated in the coding regions of 52% of genomes. Coding and noncoding DNA differed in aggregation in 94% of genomes. Noncoding regions were more aggregated than coding regions in 91% of these genomes. Genome length appears to limit aggregation, but chromosome length does not. Chromosomes from the same species are similarly aggregated despite substantial differences in length. Aggregation differed among taxonomic groups, revealing support for a previously reported pattern relating genome structure to environmental conditions.

Conclusions/Significance

Our approach revealed several patterns of genome structure among different types of DNA, different chromosomes of the same genome, and among different taxonomic groups. Similarity in aggregation among chromosomes of varying length from the same genome suggests that individual chromosome structure has not evolved independently of the general constraints on genome structure as a whole. These patterns were detected using simple and readily interpretable methods commonly used in other areas of biology.  相似文献   

5.
Drosophila polytene chromosomes are widely used as a model of eukaryotic interphase chromosomes. The most noticeable feature of polytene chromosome is transverse banding associated with alternation of dense stripes (dark or black bands) and light diffuse areas that encompass alternating less compact gray bands and interbands visible with an electron microscope. In recent years, several approaches have been developed to predict location of morphological structures of polytene chromosomes based on the distribution of proteins on the molecular map of Drosophila genome. Comparison of these structures with the results of analysis of the three-dimensional chromatin organization by the Hi-C method indicates that the morphology of polytene chromosomes represents direct visualization of the interphase nucleus spatial organization into topological domains. Compact black bands correspond to the extended topological domains of inactive chromatin, while interbands are the barriers between the adjacent domains. Here, we discuss the prospects of using polytene chromosomes to study mechanisms of spatial organization of interphase chromosomes, as well as their dynamics and evolution.  相似文献   

6.
The genomics of long tandem arrays of satellite DNA in the human genome   总被引:1,自引:0,他引:1  
H F Willard 《Génome》1989,31(2):737-744
At least 10% of DNA in the human genome consists of long arrays of repeated sequences, arranged in tandem head-to-tail arrays in a number of discrete, highly localized chromosomal regions. Different families of these so-called "satellite DNA" sequences have been defined, organized in diverged subsets on different chromosomes. The molecular, cytogenetic, and evolutionary analysis of the hierarchical organization of such sequences in the human and other complex genomes encompasses a variety of approaches, including chromosomal mapping, in situ hybridization, genetic linkage analysis, long-range restriction mapping, and DNA sequencing. Investigation of the organization of satellite arrays constitutes a necessary first step towards eventual elucidation of the origin, evolution, and maintenance of these sequences and their contribution to the structure and behavior of human chromosomes.  相似文献   

7.
In higher eukaryotic cells, chromosomes are folded inside the nucleus. Recent advances in whole-genome mapping technologies have revealed the multiscale features of 3D genome organization that are intertwined with fundamental genome functions. However, DNA sequence determinants that modulate the formation of 3D genome organization remain poorly characterized. In the past few years, predicting 3D genome organization based on DNA sequence features has become an active area of research. Here, we review the recent progress in computational approaches to unraveling important sequence elements for 3D genome organization. In particular, we discuss the rapid development of machine learning-based methods that facilitate the connections between DNA sequence features and 3D genome architectures at different scales. While much progress has been made in developing predictive models for revealing important sequence features for 3D genome organization, new research is urgently needed to incorporate multi-omic data and enhance model interpretability, further advancing our understanding of gene regulation mechanisms through the lens of 3D genome organization.  相似文献   

8.
9.
Summary Fluorescence hybridization to interphase nuclei in liquid suspension allows quantification of chromosome-specific DNA sequences using flow cytometry and the analysis of the three-dimensional positions of these sequences in the nucleus using fluorescence microscopy. The three-dimensional structure of nuclei is substantially intact after fluorescence hybridization in suspension, permitting the study of nuclear organization by optical sectioning. Images of the distribution of probe and total DNA fluroescence within a nucleus are collected at several focal planes by quantitative fluorescence microscopy and image processing. These images can be used to reconstruct the three-dimensional organization of the target sequences in the nucleus. We demonstrate here the simultaneous localization of two human chromosomes in an interphase nucleus using two probe labeling schemes (AAF and biotin). Alternatively, dual-beam flow cytometry is used to quantify the amount of bound probe and total DNA content. We demonstrate that the intensity of probe-linked fluorescence following hybridization is proportional to the amount of target DNA over a 100-fold range in target content. This was shown using four human/hamster somatic cell hybrids carrying different numbers of human chromosomes and diploid and tetraploid human cell lines hybridized with human genomic DNA. We also show that populations of male, female, and XYY nuclei can be discriminated by measuring their fluores-cence intensity following hybridization with a Y-chromosome-specific repetitive probe. The delay in the increase in Y-specific fluorescence until the end of S-phase is consistent with the results recorded in previous studies indicating that these sequences are among the last to replicate in the genome. A chromosome-17-specific repetitive probe is used to demonstrate that target sequences as small as one megabase (Mb) can be detected using fluorescence hybridization and flow cytometry.  相似文献   

10.
In higher plants, the large‐scale structure of monocentric chromosomes consists of distinguishable eu‐ and heterochromatic regions, the proportions and organization of which depend on a species' genome size. To determine whether the same interplay is maintained for holocentric chromosomes, we investigated the distribution of repetitive sequences and epigenetic marks in the woodrush Luzula elegans (3.81 Gbp/1C). Sixty‐one per cent of the L. elegans genome is characterized by highly repetitive DNA, with over 30 distinct sequence families encoding an exceptionally high diversity of satellite repeats. Over 33% of the genome is composed of the Angela clade of Ty1/copia LTR retrotransposons, which are uniformly dispersed along the chromosomes, while the satellite repeats occur as bands whose distribution appears to be biased towards the chromosome termini. No satellite showed an almost chromosome‐wide distribution pattern as expected for a holocentric chromosome and no typical centromere‐associated LTR retrotransposons were found either. No distinguishable large‐scale patterns of eu‐ and heterochromatin‐typical epigenetic marks or early/late DNA replicating domains were found along mitotic chromosomes, although super‐high‐resolution light microscopy revealed distinguishable interspersed units of various chromatin types. Our data suggest a correlation between the centromere and overall genome organization in species with holocentric chromosomes.  相似文献   

11.
Ionizing radiation can lead to DNA double-strand breaks (DSBs) which belong to the most dangerous forms of damage to the DNA. Cells possess elaborate repair mechanisms and react in a complex manner to the emergence of DSBs. Experiments have shown that gene expression levels in irradiated cells are changed, and thousands of radiation-responsive genes have been identified. On the other hand, recent studies have shown that gene expression is tightly connected to the three-dimensional organization of the genome. In this work, we analyzed the chromatin organization in the cell nuclei before and after exposure to ionizing radiation with an expression-dependent folding model. Our results indicate that the alteration of the chromosome organization on the scale of a complete chromosome is rather limited despite the expression level change of a large number of genes. We further modelled breaks within sub-compartments of the model chromosomes and showed that entropic changes caused by a break lead to increased mobility of the break sites and help to locate break ends further to the periphery of the sub-compartments. We conclude that the changes in the chromatin structure after irradiation are limited to local scales and demonstrate the importance of entropy for the behaviour of break ends.  相似文献   

12.
Summary Differential staining patterns on amphibian chromosomes are in some respects distinct from those on mammalian chromosomes; C-bands are best obtained, whereas G- and Q-bands are either unobtainable (on anuran chromosomes) or coincide with C-bands (chromosomes of urodeles). In amphibians, rRNA genes are located at secondary constrictions, but in urodeles they are also found at other chromosome sites, the positions of these sites being strictly heritable. DNA content in amphibian cells is tens and hundreds times higher than in mammals. DNA contents in anurans and urodeles differ within certain limits: from 2 to 25 pg/N and from 30 to over 160 pg/N respectively. Species characterized by slow morphogenesis have larger genomes. Genome growth is normally due to an increase in the amount of repetitive DNA (mostly intermediate repetitive sequences), the amount of unique sequences being almost constant (11 pg/genome in urodeles, and 1.5 pg/genome in anurans). In anurans in general no satellite DNA was found, whereas such fractions were found in manyUrodela species. Nucleosome chromatin structure in amphibians is identical to that of other eukariotes. It is postulated that differences in chromosome banding between amphibians and mammals are due to differences in chromatin packing which in turn is related to the distinct organization of DNA repetitive sequences. It is likely that fish chromosomes have a similiar structure. A comparison of such properties as the chromosome banding patterns, variations in nuclear DNA content and some genome characteristics enable us to group fishes and amphibians together as regards chromosome structure, as distinct from amniotes - reptiles, birds and mammals. It is probable that in the ancient amphibians - ancestors of reptiles - chromatin packing underwent a radical transformation, following changes in the organization of DNA repetitive sequences.  相似文献   

13.
14.
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as “the bacterial nucleoid.” This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.  相似文献   

15.
Chromosome large‐scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high‐resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome.   相似文献   

16.
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive".  相似文献   

17.
Tissue-specific spatial organization of genomes   总被引:2,自引:0,他引:2  

Background

Genomes are organized in vivo in the form of chromosomes. Each chromosome occupies a distinct nuclear subvolume in the form of a chromosome territory. The spatial positioning of chromosomes within the interphase nucleus is often nonrandom. It is unclear whether the nonrandom spatial arrangement of chromosomes is conserved among tissues or whether spatial genome organization is tissue-specific.

Results

Using two-dimensional and three-dimensional fluorescence in situ hybridization we have carried out a systematic analysis of the spatial positioning of a subset of mouse chromosomes in several tissues. We show that chromosomes exhibit tissue-specific organization. Chromosomes are distributed tissue-specifically with respect to their position relative to the center of the nucleus and also relative to each other. Subsets of chromosomes form distinct types of spatial clusters in different tissues and the relative distance between chromosome pairs varies among tissues. Consistent with the notion that nonrandom spatial proximity is functionally relevant in determining the outcome of chromosome translocation events, we find a correlation between tissue-specific spatial proximity and tissue-specific translocation prevalence.

Conclusions

Our results demonstrate that the spatial organization of genomes is tissue-specific and point to a role for tissue-specific spatial genome organization in the formation of recurrent chromosome arrangements among tissues.
  相似文献   

18.
We have examined the three-dimensional organization of the yeast genome during quiescence by a chromosome capture technique as a means of understanding how genome organization changes during development. For exponentially growing cells we observe high levels of inter-centromeric interaction but otherwise a predominance of intrachromosomal interactions over interchromosomal interactions, consistent with aggregation of centromeres at the spindle pole body and compartmentalization of individual chromosomes within the nucleoplasm. Three major changes occur in the organization of the quiescent cell genome. First, intrachromosomal associations increase at longer distances in quiescence as compared to growing cells. This suggests that chromosomes undergo condensation in quiescence, which we confirmed by microscopy by measurement of the intrachromosomal distances between two sites on one chromosome. This compaction in quiescence requires the condensin complex. Second, inter-centromeric interactions decrease, consistent with prior data indicating that centromeres disperse along an array of microtubules during quiescence. Third, inter-telomeric interactions significantly increase in quiescence, an observation also confirmed by direct measurement. Thus, survival during quiescence is associated with substantial topological reorganization of the genome.  相似文献   

19.
20.
The looped organization of the eukaryotic genome mediated by a skeletal framework of non-histone proteins is conserved throughout the cell cycle. The radial loop/scaffold model envisages that the higher order architecture of metaphase chromosomes relies on an axial structure around which looped DNA domains are radially arranged through stable attachment sites. In this light we investigated the relationship between the looped organization and overall morphology of chromosomes. In developing Xenopus laevis embryos at gastrulation, the bulk of the loops associated with histone-depleted nuclei exhibit a significant size increase, as visualized by fluorescence microscopy of the fully extended DNA halo surrounding high salt treated, ethidium bromide stained nuclei. This implies a reduction in the number of looped domains anchored to the supporting nucleoskeletal structure. The cytological analysis of metaphase plates from acetic acid fixed whole embryos, carried out in the absence of drugs inducing chromosome condensation, reveals a progressive thickening and shortening of metaphase chromosomes during development. We interpret these findings as a strong indication that the size and number of DNA loops influence the thickness and length of the chromosomes, respectively. The quantitative analysis of chromosome length distributions at different developmental stages suggests that the shortening is timed differently in different embryonic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号