首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NaCl和Na2CO3对盐地碱蓬胁迫效应的比较   总被引:18,自引:0,他引:18  
在相同的Na 浓度(如100 mmol/L)下,NaCl处理促进碱蓬植株干重增加,提高根系活力,而Na2CO3处理导致植株干重减少,根系活力降低;与NaCl胁迫相比,Na2CO3胁迫下叶片内Na 含量上升和K 含量下降幅度更大,叶肉细胞质Na 含量和叶内脯氨酸含量增加幅度更大,而V-H -ATPase(液泡膜H -ATPase)和V-H -PPase (液泡膜H -PPase)增加幅度较少;与NaCl胁迫不同,Na2CO3胁迫下SOD(超氧化物歧化酶)活性不是增加,而是降低,与此相一致,MDA(丙二醛)含量大幅度增加.上述结果表明,碱蓬对Na2CO3胁迫的抗性低于对NaCl的抗性,这可能与Na2CO3胁迫引起的Na 、K 离子严重失衡、活性氧清除能力降低有关.  相似文献   

2.
Biochemistry (Moscow) - Light-dependent hydrogen production by microalgae attracts attention of researchers because of the potential practical application. It is generally recognized that...  相似文献   

3.
Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10–15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.  相似文献   

4.
NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响   总被引:4,自引:0,他引:4  
以1年生“青龙桑”幼苗为试验材料,研究了中性盐(NaCl)和碱性盐(Na2CO3)胁迫下桑树幼苗的生长和叶片光合特性.结果表明:盐胁迫明显降低了桑树幼苗的株高、叶片数、生物量和叶片的光合能力.随着Na+浓度的增加,桑树叶片的气孔导度、蒸腾速率、净光合速率、实际光化学效率、电子传递速率和光化学猝灭系数明显降低,过剩光能以非光化学猝灭形式耗散的比例增加,桑树叶片的光能转化效率和光合能力下降.在Na+浓度<150 mmol·L-1时,桑树幼苗的光合能力和生长受到的抑制较小,通过增加根冠比进一步适应盐胁迫,但这种保护机制随着盐浓度的增加逐渐降低.在Na2CO3胁迫下,>50 mmol·L-1 Na+浓度对桑树的生长和光合能力表现出较强的抑制作用,并随Na+浓度的增加,抑制程度加大.在NaCl< 150mmol·L-1时,桑树的光合能力主要依赖植株形态和光合代谢双重途径适应中性盐逆境,而在NaC1浓度>150 mmol·L-1和碱性盐胁迫下,其主要依赖光合代谢来适应逆境.  相似文献   

5.
Acclimation of the green alga Chlamydomonas reinhardtii to limiting environmental CO2 induced specific protein phosphorylation at the surface of photosynthetic thylakoid membranes. Four phosphopeptides were identified and sequenced by nanospray quadrupole TOF MS from the cells acclimating to limiting CO2. One phosphopeptide originated from a protein that has not been annotated. We found that this unknown expressed protein (UEP) was encoded in the genome of C. reinhardtii. Three other phosphorylated peptides belonged to Lci5 protein encoded by the low-CO2-inducible gene 5 (lci5). The phosphorylation sites were mapped in the tandem repeats of Lci5 ensuring phosphorylation of four serine and three threonine residues in the protein. Immunoblotting with Lci5-specific antibodies revealed that Lci5 was localized in chloroplast and confined to the stromal side of the thylakoid membranes. Phosphorylation of Lci5 and UEP occurred strictly at limiting CO2; it required reduction of electron carriers in the thylakoid membrane, but was not induced by light. Both proteins were phosphorylated in the low-CO2-exposed algal mutant deficient in the light-activated protein kinase Stt7. Phosphorylation of previously unknown basic proteins UEP and Lci5 by specific redox-dependent protein kinase(s) in the photosynthetic membranes reveals the early response of green algae to limitation in the environmental inorganic carbon.  相似文献   

6.
7.
High oxygen:carbon dioxide ratios may have a negative effect on growth and productivity of microalgae. To investigate the effect of O2 and CO2 concentrations and the ratio between these on the metabolism of Chlamydomonas reinhardtii we performed turbidostat experiments at different O2:CO2 ratios. These experiments showed that elevated O2 concentrations and the corresponding increase in the ratio of O2:CO2 common in photobioreactors led to a reduction of growth and biomass yield on light with 20–30%. This is most probably related to the oxygenase activity of Rubisco and the resulting process of photorespiration. Using metabolic flux modeling with measured rates for each experiment we were able to quantify the ratio of the oxygenase reaction to the carboxylase reaction of Rubisco and could demonstrate that photorespiration indeed can cause the reduction in biomass yield on light. The calculated ratio of the oxygenase reaction to the carboxylase reaction was 16.6% and 20.5% for air with 2% CO2 and 1% CO2, respectively. Thus photorespiration has a significant impact on the biomass yield on light already at conditions common in photobioreactors (air with 2% CO2). Biotechnol. Bioeng. 2011;108: 2390–2402. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The green alga Chlamydomonas reinhardtii can grow photoautotrophically utilizing CO(2), heterotrophically utilizing acetate, and mixotrophically utilizing both carbon sources. Growth of cells in increasing concentrations of acetate plus 5% CO(2) in liquid culture progressively reduced photosynthetic CO(2) fixation and net O(2) evolution without effects on respiration, photosystem II efficiency (as measured by chlorophyll fluorescence), or growth. Using the technique of on-line oxygen isotope ratio mass spectrometry, we found that mixotrophic growth in acetate is not associated with activation of the cyanide-insensitive alternative oxidase pathway. The fraction of carbon biomass resulting from photosynthesis, determined by stable carbon isotope ratio mass spectrometry, declined dramatically (about 50%) in cells grown in acetate with saturating light and CO(2). Under these conditions, photosynthetic CO(2) fixation and O(2) evolution were also reduced by about 50%. Some growth conditions (e.g. limiting light, high acetate, solid medium in air) virtually abolished photosynthetic carbon gain. These effects of acetate were exacerbated in mutants with slowed electron transfer through the D1 reaction center protein of photosystem II or impaired chloroplast protein synthesis. Therefore, in mixotrophically grown cells of C. reinhardtii, interpretations of the effects of environmental or genetic manipulations of photosynthesis are likely to be confounded by acetate in the medium.  相似文献   

9.
10.
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

11.
The rate of C14O2 incorporation into amino acids and organic acids in C. reinhardtii is a function of particular stages of development in the life cycle of the alga. Gametic differentiation in nitrogen free medium is accompanied by a reduced rate of amino acid synthesis and a higher synthesis of organic acids than that found for the cells undergoing vegetative development. The addition of ammonium to differentiating gametes results in an increased synthesis of amino acids, particularly the basic ones, and a concomitant reduction in organic acid synthesis.  相似文献   

12.
13.
Davies DD  Patil KD 《Plant physiology》1973,51(6):1142-1144
Contrary to earlier reports, CO2 fixation by extracts of Chlamydomonas is inhibited by glutamate and aspartate. These amino acids and some organic acids are shown to be inhibitors of phosphoenolpyruvate carboxylase. Inorganic phosphate is shown to activate CO2 fixation, but there is a time lag before inorganic phosphate exerts its full activating effect.  相似文献   

14.
The effects of light on gravitaxis and velocity in the bi-flagellated green alga Chlamydomonas reinhardtii were investigated using a real time automatic tracking system. Three distinct light effects on gravitaxis and velocity with parallel kinetics were found. Photosynthetically active continuous red light reversibly enhances the swimming velocity and increases or decreases the precision of gravitaxis, depending on its initial level. Blue light flashes induce fast transient increases in velocity immediately after the photophobic response, and transiently decrease or even reverse negative gravitaxis. The calcium dependence of this response, its fluence-response curve and its spectral characteristics strongly suggest the participation of chlamy-rhodopsin in this effect. The third response, a prolonged activation of velocity and gravitaxis, is also induced by blue light flashes, which can be observed even in calcium-free medium.  相似文献   

15.
The aim of this study was to establish and validate a model for the photosynthetic growth of Chlamydomonas reinhardtii in photobioreactors (PBRs). The proposed model is based on an energetic analysis of the excitation energy transfer in the photosynthesis apparatus (the Z-scheme for photosynthesis). This approach has already been validated in cyanobacteria (Arthorspira platensis) and is extended here to predict the volumetric biomass productivity for the microalga C. reinhardtii in autotrophic conditions, taking into consideration the two metabolic processes taking place in this eukaryotic microorganism, namely photosynthesis and respiration. The kinetic growth model obtained was then coupled to a radiative transfer model (the two-flux model) to determine the local kinetics, and thereby the volumetric biomass productivity, in a torus PBR. The model was found to predict PBR performances accurately for a broad set of operating conditions, including both light-limited and kinetic growth regimes, with a variance of less than 10% between experimental results and simulations.  相似文献   

16.
17.
Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3–15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6–3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.

Algal chloroplast proteins undergo localization changes in response to CO2 concentrations, reflecting their physiological function in survival under fluctuating CO2 environments.  相似文献   

18.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

19.
Antioxidant enzymes in chloroplasts and chlorophyll fluorescence parameters of leaves of Puccinellia tenuiflora (Turcz.) scribn.et Merr. under isotonic Na2CO3 and NaCl stresses were studied. Ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities showed a similar increasing trend and then decreased with the decreasing osmotic potential of culture solution, peaking at −4.74 × 105 Pa under NaCl stress and at −3.40 × 105 Pa under Na2CO3 stress. APX, glutathione transferase and SOD activities were higher under NaCl stress than those under Na2CO3 stress, and higher activities of antioxidant enzymes in chloroplasts were accompanied by lower MDA content under NaCl stress. F v/F m, F v/F o and F v′/F m′ all initially increased and then decreased with the decreasing osmotic potential of culture solution, while Φ PSII, qNP and HDR showed a constant increase. F v/F m, F v/F o, Φ PSII and qNP under NaCl stress were also shown to be higher than those under Na2CO3 stress. The present study suggested that acidity played an important role in the hurt toPuccinellia tenuiflora seedlings, which was due to higher activities of antioxidant enzymes, qNP and Φ PSII, and the Na2CO3 resistance to Puccinellia tenuiflora was also supposed to be less than NaCl resistance in present work.  相似文献   

20.
Estimates of the effect of increased global atmospheric CO(2) levels on oceanic primary productivity depend on the physiological responses of contemporary phytoplankton populations. However, microalgal populations will possibly adapt to rising CO(2) levels in such a way that they become genetically different from contemporary populations. The unknown properties of these future populations introduce an undefined error into predictions of C pool dynamics, especially the presence and size of the biological C pump. To address the bias in predictions introduced by evolution, we measured the kinetics of CO(2) uptake in populations of Chlamydomonas reinhardtii that had been selected for growth at high CO(2) for 1000 generations. Following selection at high CO(2), the populations were unable to induce high-affinity CO(2) uptake, and one line had a lower rate of net CO(2) uptake. We attribute this to conditionally neutral mutations in genes affecting the C concentrating mechanism (CCM). Lower affinity CO(2) uptake, in addition to smaller population sizes, results in a significant reduction in net CO(2) uptake of about 38% relative to contemporary populations under the same conditions. This shows how predictions about the properties of communities in the future can be influenced by the effect of natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号