首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6 and U5 share eight proteins B', B, D1, D2, D3, E, F and G which form the structural core of the snRNPs. This class of common proteins plays an essential role in the biogenesis of the snRNPs. In addition, these proteins represent the major targets for the so-called anti-Sm auto-antibodies which are diagnostic for systemic lupus erythematosus (SLE). We have characterized the proteins F and G from HeLa cells by cDNA cloning, and, thus, all human Sm protein sequences are now available for comparison. Similar to the D, B/B' and E proteins, the F and G proteins do not possess any of the known RNA binding motifs, suggesting that other types of RNA-protein interactions occur in the snRNP core. Strikingly, the eight human Sm proteins possess mutual homology in two regions, 32 and 14 amino acids long, that we term Sm motifs 1 and 2. The Sm motifs are evolutionarily highly conserved in all of the putative homologues of the human Sm proteins identified in the data base. These results suggest that the Sm proteins may have arisen from a single common ancestor. Several hypothetical proteins, mainly of plant origin, that clearly contain the conserved Sm motifs but exhibit only comparatively low overall homology to one of the human Sm proteins, were identified in the data base. This suggests that the Sm motifs may also be shared by non-spliceosomal proteins. Further, we provide experimental evidence that the Sm motifs are involved, at least in part, in Sm protein-protein interactions. Specifically, we show by co-immunoprecipitation analyses of in vitro translated B' and D3 that the Sm motifs are essential for complex formation between B' and D3. Our finding that the Sm proteins share conserved sequence motifs may help to explain the frequent occurrence in patient sera of anti-Sm antibodies that cross-react with multiple Sm proteins and may ultimately further our understanding of how the snRNPs act as auto-antigens and immunogens in SLE.  相似文献   

2.
Seven Sm proteins, termed B/B', D1, D2, D3, E, F, and G, assemble in an ordered manner onto U snRNAs to form the Sm core of the spliceosomal snRNPs U1, U2, U4/U6, and U5. The survival of motor neuron (SMN) protein binds to Sm proteins and mediates in the context of a macromolecular (SMN-) complex the assembly of the Sm core. Binding of SMN to Sm proteins is enhanced by modification of specific arginine residues in the Sm proteins D1 and D3 to symmetrical dimethylarginines (sDMAs), suggesting that assembly might be regulated at the posttranslational level. Here we provide evidence that the previously described pICln-complex, consisting of Sm proteins, the methyltransferase PRMT5, pICln, and two novel factors, catalyzes the sDMA modification of Sm proteins. In vitro studies further revealed that the pICln complex inhibits the spontaneous assembly of Sm proteins onto a U snRNA. This effect is mediated by pICln via its binding to the Sm fold of Sm proteins, thereby preventing specific interactions between Sm proteins required for the formation of the Sm core. Our data suggest that the pICln complex regulates an early step in the assembly of U snRNPs, possibly the transfer of Sm proteins to the SMN-complex.  相似文献   

3.
The Sm small nuclear ribonucleoproteins (snRNPs) from mammalian cells have been characterized as containing U1, U2, U4, U5, and U6 RNA associated with some subset of at least 10 distinct polypeptides (called 68K, A, A', B, B', C, D, E, F, and G) that range in molecular weight from 68,000 to 11,000. Whereas this entire collection of snRNP particles is precipitated by patient anti-Sm autoantibodies, anti-(U1)RNP autoantibodies specifically recognize U1 snRNPs. Here, we have performed immunoblots using the sera from 29 patients and a mouse anti-Sm monoclonal antibody to identify which HeLa cell snRNP proteins carry anti-Sm or anti-(U1)RNP antigenic determinants. Strikingly, every serum surveyed, as well as the monoclonal antibody, recognizes determinants on two or more snRNP protein components. The three proteins, 68K, A, and C, that uniquely fractionate with U1 snRNPs are specifically reactive with anti-(U1)RNP sera in blots. Anti-Sm patient sera and the mouse monoclonal antibody react with proteins B, B', D, and sometimes E, one or more of which must be present on all Sm snRNPs. The blot results combined with data obtained from a refined 32P-labeled RNA immunoprecipitation assay reveal that, in our collection of the sera from 29 patients, anti-Sm rarely exists in the absence of equal or higher titers of anti-(U1)RNP; moreover, (U1)RNP sera often contain detectable levels of anti-Sm. Our findings further define the protein composition of the Sm snRNPs and raise intriguing questions concerning the relatedness of snRNP polypeptides and the mechanism of autoantibody induction.  相似文献   

4.
Autoantibodies directed against spliceosomal proteins are a common and specific feature of systemic lupus erythematosus. These autoantibodies target a collection of proteins, including Sm B, B', D1, D2, and D3. We define the common antigenic targets of Sm D2 and D3 and examine their role in spliceosomal autoimmunity. Our results define nine major common epitopes, five on Sm D2 and four on Sm D3. These epitopes have significantly higher (more basic) isoelectric points than do nonantigenic regions. In fact, this association is of sufficient power to make isoelectric point an excellent predictor of spliceosomal antigenicity. The crystallographic structure of Sm D2 and D3 is now partially described. The anti-Sm D2 and D3 antigenic targets are located on the surface of the respective three-dimensional complexed proteins, thereby suggesting that these epitopes are accessible in the native configuration. All but one of these nine epitopes conspicuously avoid the specific regions involved in intermolecular interactions within the spliceosomal complex. One of the D3 epitopes (RGRGRGMGR) has significant sequence homology with a major antigenic region of Sm D1 (containing a carboxyl-terminal glycine-arginine repeat), and anti-D3 Abs cross-react with this epitope of Sm D1. These results demonstrate that spliceosomal targets of autoimmunity are accessible on native structure surfaces and that cross-reactive epitopes, as well as structural associations of various spliceosomal Ags, may be involved in the induction of autoimmunity in systemic lupus.  相似文献   

5.
Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. The spliceosomal Sm proteins are recognized by the so-called anti-Sm autoantibodies, an antibody population found exclusively in patients suffering from systemic lupus erythematosus. We have studied the effects of apoptosis on the Sm proteins and demonstrate that one of the Sm proteins, the Sm-F protein, is proteolytically cleaved in apoptotic cells. Cleavage of the Sm-F protein generates a 9-kDa apoptotic fragment, which remains associated with the U snRNP complexes in apoptotic cells. Sm-F cleavage is dependent on caspase activation and the cleavage site has been located near the C-terminus, EEED(81) downward arrow G. Use of different caspase inhibitors suggests that besides caspase-8 other caspases are implicated in Sm-F cleavage. A C-terminally truncated mutant of the Sm-F protein, representing the modified form of the protein, is capable of forming an Sm E-F-G complex in vitro that is recognized by many anti-Sm patient sera.  相似文献   

6.

Background

Antibodies against spliceosome Sm proteins (anti-Sm autoantibodies) are specific to the autoimmune disease systemic lupus erythematosus (SLE). Anti-Sm autosera have been reported to specifically recognize Sm D1 and D3 with symmetric di-methylarginines (sDMA). We investigated if anti-Sm sera from local SLE patients can differentially recognize Sm proteins or any other proteins due to their methylation states.

Results

We prepared HeLa cell proteins at normal or hypomethylation states (treated with an indirect methyltransferase inhibitor adenosine dialdehyde, AdOx). A few signals detected by the anti-Sm positive sera from typical SLE patients decreased consistently in the immunoblots of hypomethylated cell extracts. The differentially detected signals by one serum (Sm1) were pinpointed by two-dimensional electrophoresis and identified by mass spectrometry. Three identified proteins: splicing factor, proline- and glutamine-rich (SFPQ), heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and cellular nucleic acid binding protein (CNBP) are known to contain methylarginines in their glycine and arginine rich (GAR) sequences. We showed that recombinant hnRNP DL and CNBP expressed in Escherichia coli can be detected by all anti-Sm positive sera we tested. As CNBP appeared to be differentially detected by the SLE sera in the pilot study, differential recognition of arginine methylated CNBP protein by the anti-Sm positive sera were further examined. Hypomethylated FLAG-CNBP protein immunopurified from AdOx-treated HeLa cells was less recognized by Sm1 compared to the CNBP protein expressed in untreated cells. Two of 20 other anti-Sm positive sera specifically differentiated the FLAG-CNBP protein expressed in HeLa cells due to the methylation. We also observed deferential recognition of methylated recombinant CNBP proteins expressed from E. coli by some of the autosera.

Conclusion

Our study showed that hnRNP DL and CNBP are novel antigens for SLE patients and the recognition of CNBP might be differentiated dependent on the level of arginine methylation.  相似文献   

7.
Anti-Sm antibodies, identified in 1966 by Tan and Kunkel, are highly specific serological markers for systemic lupus erythrematosus (SLE). Anti-Sm reactivity is found in 5–30% of SLE patients, depending on the autoantibody detection system and the racial background of the SLE population. The Sm autoantigen complex comprises at least nine different polypeptides. All of these core proteins can serve as targets of the anti-Sm B-cell response, but most frequently the B and D polypeptides are involved. Because the BB'Sm proteins share cross-reactive epitopes (PPPGMRPP) with U1 specific ribonucleoproteins, which are more frequently targeted by antibodies that are present in patients with mixed connective tissue disease, the SmD polypeptides are regarded as the Sm autoantigens that are most specific to SLE. It was recently shown that the polypeptides D1, D3 and BB' contain symmetrical dimethylarginine, which is a component of a major autoepitope within the carboxyl-terminus of SmD1. In one of those studies, a synthetic dimethylated peptide of SmD1 (amino acids 95–119) exhibited significantly increased immunoreactivity as compared with unmodified SmD1 peptide. Using immobilized peptides, we confirmed that the dimethylated arginine residues play an essential role in the formation of major SmD1 and SmD3 autoepitopes. Moreover, we demonstrated that one particular peptide of SmD3 represents a more sensitive and more reliable substrate for the detection of a subclass of anti-Sm antibodies. Twenty-eight out of 176 (15.9%) SLE patients but only one out of 449 (0.2%) control individuals tested positive for the anti-SmD3 peptide (SMP) antibodies in a new ELISA system. These data indicate that anti-SMP antibodies are exclusively present in sera from SLE patients. Thus, anti-SMP detection using ELISA represents a new serological marker with which to diagnose and discriminate between systemic autoimmune disorders.  相似文献   

8.
Anti-Sm antibodies, identified in 1966 by Tan and Kunkel, are highly specific serological markers for systemic lupus erythrematosus (SLE). Anti-Sm reactivity is found in 5-30% of SLE patients, depending on the autoantibody detection system and the racial background of the SLE population. The Sm autoantigen complex comprises at least nine different polypeptides. All of these core proteins can serve as targets of the anti-Sm B-cell response, but most frequently the B and D polypeptides are involved. Because the BB'Sm proteins share cross-reactive epitopes (PPPGMRPP) with U1 specific ribonucleoproteins, which are more frequently targeted by antibodies that are present in patients with mixed connective tissue disease, the SmD polypeptides are regarded as the Sm autoantigens that are most specific to SLE. It was recently shown that the polypeptides D1, D3 and BB' contain symmetrical dimethylarginine, which is a component of a major autoepitope within the carboxyl-terminus of SmD1. In one of those studies, a synthetic dimethylated peptide of SmD1 (amino acids 95-119) exhibited significantly increased immunoreactivity as compared with unmodified SmD1 peptide. Using immobilized peptides, we confirmed that the dimethylated arginine residues play an essential role in the formation of major SmD1 and SmD3 autoepitopes. Moreover, we demonstrated that one particular peptide of SmD3 represents a more sensitive and more reliable substrate for the detection of a subclass of anti-Sm antibodies. Twenty-eight out of 176 (15.9%) SLE patients but only one out of 449 (0.2%) control individuals tested positive for the anti-SmD3 peptide (SMP) antibodies in a new ELISA system. These data indicate that anti-SMP antibodies are exclusively present in sera from SLE patients. Thus, anti-SMP detection using ELISA represents a new serological marker with which to diagnose and discriminate between systemic autoimmune disorders.  相似文献   

9.
Systemic lupus erythematosus is an autoimmune disease characterized by the presence of autoantibodies. One of the unique targets of the immune system in systemic lupus erythematosus is Sm, a ribonucleoprotein present in all cells. To understand the regulation of B cells specific to the Sm Ag in normal mice, we have generated an Ig H chain transgenic mouse (2-12H Tg). 2-12H Tg mice produce B cells specific for the Sm that remain tolerant due to ignorance. We demonstrate here that anti-Sm B cells of 2-12H Tg mice can differentiate into Sm-specific peritoneal B-1 cells that remain tolerant. Differentiation to B-1 and tolerance are governed by the strength of B cell receptor signaling, since manipulations of the B cell receptor coreceptors CD19 and CD22 affect anti-Sm B cell differentiation and autoantibody production. These results suggest a differentiation scheme in which peripheral ignorance to Sm is maintained in mice by the differentiation of anti-Sm B cells to B-1 cells that have increased activation thresholds.  相似文献   

10.
Antibodies against naked U1RNA can be found in sera from patients with overlap syndromes of systemic lupus erythematosus (SLE) in addition to antibodies directed to the proteins of U1 ribonucleoproteins (U1RNP). We investigated the reactivity of these U1RNA specific autoantibodies with the native U1RNP particle both in vitro and inside the cell. For this purpose a method was developed to purify human autoantibodies directed to specific regions of U1RNA. The antibodies are specifically directed to either stemloop II or stemloop IV of U1RNA and do not crossreact with protein components of U1RNP. Both types of antibody are able to precipitate from cell extracts native U1snRNPs containing most, if not all, protein components. Immunofluorescence patterns indicate that the antigenic sites on the RNA, i.e. the stem of stemloop II and the loop of stemloop IV, are also available after fixation of the cells. Immunoelectron microscopy employing anti-stemloop IV antibodies and purified, complete U1snRNP particles showed that stemloop IV is located within the body of the U1RNP complex, which also comprises the Sm site and the common Sm proteins. The anti-U1RNA autoantibodies described in this paper recognize native U1RNP particles within the cell and can therefore be used as tools to study mechanisms involved in splicing of pre-mRNA.  相似文献   

11.
Anti-Sm (Sm: U1-U6 RNA-protein complex) antibodies are usually considered highly specific for systemic lupus erythematosus (SLE), while anti-U1RNP (U1RNP: U1RNA-protein complex) are thought of as diagnostic criteria for the mixed connective tissue disease (MCTD). However, both antibody specificities coexist in SLE and MCTD, in varying percentages. Although the anti-Sm/anti-U1RNP immunological cross-reactivity has been initially attributed to a common motif, PPXY(Z)PP (where X, Y, Z are various amino acids), found in the Sm, U1-A and U1-C autoantigens, it appears that the conformational features of the Sm epitopes also play an important role in the immunoreactivity. The PPGMRPP and PPGIRGP main epitopes of the Sm antigen were coupled in duplicate to the tetrameric Ac-(Lys-Aib-Gly)4-OH, SOC4, carrier to form the [(PPGMRPP)2, (PPGIRGP)2]-SOC4 construct as a mimic of the native Sm. It was found that: (i) the 3(10) helical structure of SOC4 allows the epitopes to adopt an exposed orientation, similar to their free forms, that facilitates their recognition from the anti-Sm antibodies, and (ii) the U1-RNP cross-reactivity is minimized.  相似文献   

12.
B Séraphin 《The EMBO journal》1995,14(9):2089-2098
Several small nuclear RNAs (snRNAs), including the spliceosomal U1, U2, U4 and U5 snRNAs, are associated with Sm proteins. These eight small proteins form a heteromeric complex that binds to snRNAs and plays a major role in small nuclear ribonucleoprotein (snRNP) biogenesis and transport. These proteins are also a major target for autoantibodies in the human disease systemic lupus erythematosus. By sequence comparison I have shown that all the known Sm proteins share a common structural motif which might explain their immunological cross-reactivity. Database searches using this motif uncovered a large number of Sm-like proteins from plants, animals and fungi. These proteins have been grouped in at least 13 different subfamilies. Genes encoding divergent yeast members were cloned and used to produce tagged fusion proteins. Some of these proteins are canonical Sm proteins as they associate with the yeast U1, U2, U4/U6 and U5 snRNAs. Surprisingly, one Sm-like protein was found to be a component of the U6 snRNP. These findings have implications for the structure of the Sm protein complex, spliceosomal snRNP evolution, snRNA transport and modification as well as the involvement of Sm proteins in systemic lupus erythematosus.  相似文献   

13.
Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are major constituents of the spliceosome. They are composed of approximately 30 different proteins which can bind to nascent pre-mRNA. Among these, the hnRNP-A/B proteins form a subgroup of highly related proteins consisting of two adjacent RNA binding domains (RBD) within the N-terminal parts, whereas the C-terminal halves contain almost 50% glycine residues. These proteins, in particular A2/RA33, are targeted by autoantibodies from patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and mixed connective tissue disease (MCTD). In SLE anti-hnRNP antibodies frequently occur together with antibodies to U1 small nuclear RNP (U1-snRNP) and Sm, other proteins of the spliceosome. Preliminary epitope mapping studies have revealed major antibody binding sites in the RNA binding regions for all three diseases. Nevertheless, there is some indication of disease specific epitope recognition. Studies in animal models have demonstrated anti-RA33/hnRNP-A/B antibodies in lupus-prone mouse strains.Thus, autoantibodies to the spliceosomal hnRNP-A/B proteins are a common feature of RA, SLE, and MCTD. However, these diseases differ in their reactivities to other spliceosomal proteins, especially anti-U1 snRNP and Sm. Therefore, anti-RA33/hnRNP-A/B autoantibodies are not only valuable diagnostic markers but may also allow additional insights into the pathogenesis of rheumatic autoimmune diseases.Abbreviations AS ankylosing spondylitis - hnRNP heterogeneous nuclear ribonucleoprotein - MCTD mixed connective tissue disease - PSA psoriatic arthropathy - RA rheumatoid arthritis - RBD RNA binding domain - SLE systemic lupus erythematosus - snRNP small nuclear ribonucleoprotein  相似文献   

14.
Arginine residues in RG-rich proteins are frequently dimethylated posttranslationally by protein arginine methyltransferases (PRMTs). The most common methylation pattern is asymmetrical dimethylation, a modification important for protein shuttling and signal transduction. Symmetrically dimethylated arginines (sDMA) have until now been confined to the myelin basic protein MBP and the Sm proteins D1 and D3. We show here by mass spectrometry and protein sequencing that also the human Sm protein B/B' and, for the first time, one of the Sm-like proteins, LSm4, contain sDMA in vivo. The symmetrical dimethylation of B/B', LSm4, D1, and D3 decisively influences their binding to the Tudor domain of the "survival of motor neurons" protein (SMN): inhibition of dimethylation by S-adenosylhomocysteine (SAH) abolished the binding of D1, D3, B/B', and LSm4 to this domain. A synthetic peptide containing nine sDMA-glycine dipeptides, but not asymmetrically modified or nonmodified peptides, specifically inhibited the interaction of D1, D3, B/B', LSm4, and UsnRNPs with SMN-Tudor. Recombinant D1 and a synthetic peptide could be methylated in vitro by both HeLa cytosolic S100 extract and nuclear extract; however, only the cytosolic extract produced symmetrical dimethylarginines. Thus, the Sm-modifying PRMT is cytoplasmic, and symmetrical dimethylation of B/B', D1, and D3 is a prerequisite for the SMN-dependent cytoplasmic core-UsnRNP assembly. Our demonstration of sDMAs in LSm4 suggests additional functions of sDMAs in tri-UsnRNP biogenesis and mRNA decay. Our findings also have interesting implications for the understanding of the aetiology of spinal muscular atrophy (SMA).  相似文献   

15.
Electrophoresis of the mixture of proteins from purified snRNPs U1, U2, U4/U6 and U5 on SDS-polyacrylamide gels that had been allowed to polymerise in the presence of high TEMED concentrations have revealed the presence of proteins in the snRNPs that previously had eluded detection. The most striking case is that of protein D, heretofore generally observed as a single broad band; in high-TEMED gels, this splits into three clearly-separated bands, identified as three distinct proteins. We have denoted these proteins D1 (16 kDa), D2 (16.5 kDa) and D3 (18 kDa). Chemical and immunological studies have shown that D1 is identical with the common snRNP protein D, whose structure was recently resolved by cDNA cloning (Rokeach et al. (1988), Proc. Natl. Acad. Sci. USA, 85, 4832-4836) and that D2 and D3 are clearly distinct from D1 and very probably from each other. In addition to D1, proteins D2 and D3 are present in purified U1, U2, U4/U6 and U5 snRNPs isolated from HeLa cells, so these also belong to the group of common snRNP proteins. They are also found in snRNPs isolated from mouse cells, indicating that the role of these proteins in the structure and/or function of UsnRNPs has been conserved in evolution. Interestingly, patients with systemic lupus erythematosus produce populations of anti-Sm autoantibodies that react differentially with the D proteins; some recognise all of them and others only a subset. The high-TEMED gels allow improved resolution not only of the D proteins, but also of some of the U5-specific proteins contained in 20S U5 snRNPs, in particular the 15-kDa protein. In addition, under these conditions, the common G protein, previously observed as a single band, appears as a doublet. Whether the additional band represents a distinct common snRNP protein or a post-translationally modified version of G is not yet known.  相似文献   

16.
The survival of motor neurons protein (SMN), the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, functions as an assembly factor for snRNPs and likely other RNPs. SMN binds the arginine- and glycine-rich (RG) domains of the snRNP proteins SmD1 and SmD3. Specific arginines in these domains are modified to dimethylarginines, a common modification of unknown function. We show that SMN binds preferentially to the dimethylarginine-modified RG domains of SmD1 and SmD3. The binding of other SMN-interacting proteins is also strongly enhanced by methylation. Thus, methylation of arginines is a novel mechanism to promote specific protein-protein interactions and appears to be key to generating high-affinity SMN substrates. It is reasonable to expect that protein hypomethylation may contribute to the severity of SMA.  相似文献   

17.
The in vivo synthesis and assembly of human small nuclear ribonucleoproteins (snRNPs) have been studied using pulse/chase analysis. Antibodies derived from patients with systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) recognize distinguishable subsets of pulse-labeled snRNP peptides. These antibodies were used to immunoprecipitate sucrose gradient fractionated pulse-labeled and pulse/chased snRNP proteins. The results indicate that assembly of the U RNA-containing snRNPs is a multistep process involving prior assembly of an RNA-free 6S core particle. This precursor contains snRNP peptides D, E, F, and G, which are common to all the different U RNA-containing particles. Furthermore, a posttranslational modification of one of the U1 snRNP-specific peptides has been observed, and the kinetics of this process indicates that the modification occurs after particle assembly. Functional and structural implications of a protein core for snRNP particles are discussed.  相似文献   

18.
snRNPs, integral components of the pre-mRNA splicing machinery, consist of seven Sm proteins which assemble in the cytoplasm as a ring structure on the snRNAs U1, U2, U4, and U5. The survival motor neuron (SMN) protein, the spinal muscular atrophy disease gene product, is crucial for snRNP core particle assembly in vivo. SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3. We found that the unmodified, but not the sDMA-modified, RG domains of SmD1 and SmD3 associate with a 20S methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 and a JBP1-interacting protein, pICln. JBP1 binds SmD1 and SmD3 via their RG domains, while pICln binds the Sm domains. JBP1 produces sDMAs in the RG domain-containing Sm proteins. We further demonstrate the existence of a 6S complex that contains pICln, SmD1, and SmD3 but not JBP1. SmD3 from the methylosome, but not that from the 6S complex, can be transferred to the SMN complex in vitro. Together with previous results, these data indicate that methylation of Sm proteins by the methylosome directs Sm proteins to the SMN complex for assembly into snRNP core particles and suggest that the methylosome can regulate snRNP assembly.  相似文献   

19.
20.
The survival of motor neurons (SMN) complex mediates the assembly of small nuclear ribonucleoproteins (snRNPs) involved in splicing and histone RNA processing. A crucial step in this process is the binding of Sm proteins onto the SMN protein. For Sm B/B', D1, and D3, efficient binding to SMN depends on symmetrical dimethyl arginine (sDMA) modifications of their RG-rich tails. This methylation is achieved by another entity, the PRMT5 complex. Its pICln subunit binds Sm proteins whereas the PRMT5 subunit catalyzes the methylation reaction. Here, we provide evidence that Lsm10 and Lsm11, which replace the Sm proteins D1 and D2 in the histone RNA processing U7 snRNPs, associate with pICln in vitro and in vivo without receiving sDMA modifications. This implies that the PRMT5 complex is involved in an early stage of U7 snRNP assembly and hence may have a second snRNP assembly function unrelated to sDMA modification. We also show that the binding of Lsm10 and Lsm11 to SMN is independent of any methylation activity. Furthermore, we present evidence for two separate binding sites in SMN for Sm/Lsm proteins. One recognizes Sm domains and the second one, the sDMA-modified RG-tails, which are present only in a subset of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号