首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The intracellular transport of chylomicron remnants labeled with [3H]retinyl ester was studied in rat liver parenchymal cells by means of subcellular fractionation in Nycodenz and sucrose density gradients. The data presented indicate that endocytosed chylomicron remnant [3H]retinyl ester initially is located in low density endosomes. Radioactivity is subsequently transferred to a denser vesicle. Equilibrium as well as rate zonal centrifugation suggest that this denser [3H] retinoid-containing vesicle may represent endoplasmic reticulum. We have compared the intracellular transport of chylomicron remnant [3H]retinyl ester and 125I-asialofetuin. The receptor-mediated endocytosis of asialoglycoproteins in rat liver parenchymal cells is a thoroughly studied system. Our results suggest that the [3H] retinoid and 125I-asialofetuin follow the same path initially to the endosomes. After transit in endosomes, the intracellular transport differs. While asialofetuin is transported to the lysosomes, the retinoid is probably transferred to the endoplasmic reticulum.  相似文献   

2.
Late endosomes derive from early endosomes by maturation.   总被引:34,自引:0,他引:34  
Endocytosed proteins destined for degradation in lysosomes are targeted mainly to early endosomes following uptake. Late endosomes are the major site for entry of newly synthesized lysosomal hydrolases via the cation-independent mannose 6-phosphate receptor into the degradative pathway. No consensus exists as to the mechanism of transport from early to late endosomes. We used asialoorosomucoid and transferrin to label selected parts of the degradative and receptor-recycling pathways, respectively, in the human hepatoma cell line HepG2. Intracellular mixing of sequentially endocytosed 125I- and HRP-labeled ligands was monitored by using 3,3'-diaminobenzidine-mediated density perturbation. The entire endocytic pathway of asialoorosomucoid, except for the lysosomes, remained fully accessible to subsequently endocytosed transferrin conjugated to HRP with unchanged kinetics. These results together with immunoelectron microscopic data support a model in which early endosomes gradually mature into late endosomes.  相似文献   

3.
1. Receptor-mediated endocytosis of mannose-terminated glycoproteins in rat liver endothelial cells has been followed by means of subcellular fractionation and by immunocytochemical labelling of ultrathin cryosections after intravenous injection of ovalbumin. For subcellular-fractionation studies the ligand was labelled with 125-tyramine-cellobiose adduct, which leads to labelled degradation products being trapped intracellularly in the organelle where the degradation takes place. 2. Isopycnic centrifugation in sucrose gradients of a whole liver homogenate showed that the ligand is sequentially associated with three organelles with increasing buoyant densities. The ligand was, 1 min after injection, recovered in a light, slowly sedimenting vesicle and subsequently (6 min) in larger endosomes. After 24 min the ligand was recovered in dense organelles, where also acid-soluble degradation products accumulated. 3. Immunocytochemical labelling of ultrathin cryosections showed that the ligand appeared rapidly after internalization in coated vesicles and subsequently in two larger types of endosomes. In the 'early' endosomes (1 min after injection) the labelling was seen closely associated with the membrane of the vesicle; after 6 min the ligand was evenly distributed in the lumen. At 24 min after injection the ligand was found in the lysosomes. 4. A bimodal distribution of endothelial cell lysosomes with different buoyant densities was revealed by centrifugation in iso-osmotic Nycodenz gradients, suggesting that two types of lysosomes are involved in the degradation of mannose-terminated glycoproteins in liver endothelial cells. Two populations of lysosomes were also revealed by sucrose-density-gradient centrifugation after injection of large amounts of yeast invertase. 5. In conclusion, ovalbumin is transferred rapidly through three endosomal compartments before delivering to the lysosomes. The degradation seems to take place in two populations of lysosomes.  相似文献   

4.
Endosomal density shift is related to a decrease in fusion capacity.   总被引:2,自引:0,他引:2  
Dinitrophenol (DNP)-beta-glucuronidase and mannosylated anti-DNP IgG, which are endocytosed by the mannose receptor and delivered to lysosomes, were previously developed as probes for examination of fusion between early endosomes in a cell-free system. In this study, these probes were found to be transported by intact cells to endocytic vesicles with heavy buoyant density at different rates, as determined by Percoll gradient fractionation of cell homogenates. There was a concomitant loss of in vitro fusion activity as the ligands moved to dense compartments. In monensin-treated cells, DNP-beta-glucuronidase was retained in a light compartment corresponding to intracellular vesicles capable of fusion in vitro. Pulse-chase studies using a DNP-derivatized transferrin-alkaline phosphatase conjugate showed that a recycling ligand was always found in light intracellular vesicles that were capable of fusion to early endosomes in vitro. In contrast to cell-free systems, intact cells sequentially labeled with DNP-beta-glucuronidase and then mannosylated anti-DNP IgG showed ligand mixing in both early and late endocytic compartments. Treatment with nocodazole or colchicine did not affect the rate of DNP-beta-glucuronidase transport to heavy vesicles in intact cells, however, the extent of ligand mixing in late endosomes was decreased by microtubule disruption. Using sequentially labeled cells split into two groups, we directly compared ligand mixing in vitro to mixing by intact cells. Fusion alone does not mediate increases in vesicle density, since DNP-beta-glucuronidase/anti-DNP IgG complexes formed in vitro were found in light vesicles, while intact cells showed immune complexes predominantly in heavy vesicles. These results suggest that the density shift is an initial step in targeting to lysosomes.  相似文献   

5.
The relationship between autophagy and the intracellular distribution of endocytosed asialoorosomucoid was studied in cultured rat hepatocytes. Overt autophagy was induced by shifting the cells to a minimal salt medium. Incubation in minimal salt medium led to the formation of buoyant lysosomes at the expense of denser lysosomes manifested as a dual distribution of these organelles in Nycodenz gradients. Asialoorosomucoid was labeled with 125I-tyramine cellobiose. The labeled degradation products formed from this ligand are trapped at the site of degradation and may therefore serve as markers for the subgroup of lysosomes involved in the degradation. In control cells the degradation of the ligand was initiated in a light prelysosomal compartment and continued in denser lysosomes. In cells with high autophagic activity, the degradation of labeled asialoorosomucoid took place exclusively in a buoyant group of lysosomes. These results suggest that degradation of endocytosed ligand takes place in the same secondary lysosomes as substrate sequestered by autophagic mechanisms. These light lysosomes represent a subgroup of active lysosomes which are gradually recruited from dense bodies. Data are also presented that indicate that insulin may prevent the change in buoyant density brought about by incubation in deficient medium.  相似文献   

6.
The intracellular transport and degradation of asialoorosomucoid (AOM) in isolated rat hepatocytes was studied by means of subcellular fractionation in Nycodenz gradients. The asialoglycoprotein was labelled by covalent attachment of a radioiodinated tyramine-cellobiose adduct ( [125I]TC) which leads to labelled degradation products being trapped intracellularly and thus serving as markers for the degradative organelles. The ligand was initially (1 min) in a slowly sedimenting (small) vesicle and subsequently in larger endosomes. Acid-soluble, radioactive degradation products were first found in a relatively light lysosome whose distribution coincided in the gradient with that of the larger endosome. Later (30 min) degradation products were found in denser lysosomes which banded in the same region of the gradient as the lysosomal enzyme, beta-acetylglucosaminidase. Colchicine, monensin and leupeptin all inhibited degradation of [125I]tyramine-cellobiose asialoorosomucoid ( [125I]TC-AOM) and reduced the formation of degradation products in both the light and the dense lysosomes. In presence of monensin and colchicine no undegraded ligand was seen in the dense lysosome, suggesting that uptake in these vesicles was inhibited. Leupeptin allowed accumulation of undegraded ligand in the dense lysosome. Therefore, transfer from light to dense lysosomes is not dependent on degradation as such. In the presence of monensin two peaks of undegraded ligand were found in the gradients. It seems possible that in the monensin-sensitive endosomes, dissociation of the ligand-receptor complex is inhibited, allowing ligand to recycle with the receptors in small vesicles.  相似文献   

7.
The subcellular distribution of beta-glucuronidase acquired by deficient human fibroblasts during co-culture with peritoneal macrophages was compared with that taken up by receptor-mediated endocytosis. Labelled enzyme taken up via receptors was located initially in a low-density endosomal fraction and was transferred to lysosomes within a few minutes. The beta-glucuronidase acquired during 24 h of co-culture was present almost entirely within lysosomes and had a distribution profile identical with that of endogenous beta-hexosaminidase. Monensin prevented transfer of radiolabelled enzyme from endosomes to lysosomes and had a similar effect on the distribution of enzyme acquired by direct transfer, causing beta-glucuronidase to accumulate within endosomes. When the temperature was lowered from 37 degrees C to 19 degrees C, the rate of transfer of enzyme from endosomes to lysosomes was decreased during both direct transfer and indirect receptor-mediated endocytosis. These results show that a lysosomal enzyme acquired by direct transfer during cell-to-cell contact follows a similar intracellular route and has a similar distribution to that of enzymes taken up via cell-surface receptors.  相似文献   

8.
The distributions of two endocytosed radiolabelled ligands (polymeric immunoglobulin A and asialofetuin) in rat liver endocytic compartments were investigated by using rapid subcellular fractionation of post-mitochondrial supernatants on vertical density gradients of Ficoll or Nycodenz. Two endocytic compartments were identified, both ligands being initially associated with a light endocytic-vesicle fraction on Ficoll gradients, asialofetuin then accumulating in denser endosomes before transfer to lysosomes for degradation.  相似文献   

9.
Late endosomes, which have the morphological characteristics of multivesicular bodies, have received relatively little attention in comparison with early endosomes and lysosomes. Recent work in mammalian and yeast cells has given insights into their structure and function, including the generation of their multivesicular morphology. Lipid partitioning to create microdomains enriched in specific lipids is observed in late endosomes, with some lumenal vesicles enriched in lysobisphosphatidic acid and others in phosphatidylinositol 3-phosphate. Sorting of membrane proteins into the lumenal vesicles may occur because of the properties of their trans-membrane domains, or as a result of tagging with ubiquitin. Yeast class E Vps proteins and their mammalian orthologs are the best candidates to make up the protein machinery that controls inward budding, a process that starts in early endosomes. Late endosomes are able to undergo homotypic fusion events and also heterotypic fusion with lysosomes, a process that delivers endocytosed macromolecules for proteolytic degradation.  相似文献   

10.
Lysosomes play a central role in the degradation of proteins and other macromolecules. The mechanisms by which receptors are transferred to lysosomes for constitutive degradation are poorly understood. We have analyzed the processes that lead to the lysosomal delivery of the Fc receptor, FcRn. These studies provide support for a novel pathway for receptor delivery. Specifically, unlike other receptors that enter intraluminal vesicles in late endosomes, FcRn is transferred from the limiting membrane of such endosomes to lysosomes, and is rapidly internalized into the lysosomal lumen. By contrast, LAMP-1 persists on the limiting membrane. Receptor transfer is mediated by tubular extensions from late endosomes to lysosomes, or by interactions of the two participating organelles in kiss-and-linger-like processes, whereas full fusion is rarely observed. The persistence of FcRn on the late endosomal limiting membrane, together with selective transfer to lysosomes, allows this receptor to undergo recycling or degradation. Consequently, late endosomes have functional plasticity, consistent with the presence of the Rab5 GTPase in discrete domains on these compartments.  相似文献   

11.
《The Journal of cell biology》1994,126(5):1173-1182
The passage of pulse doses of asialoglycoproteins through the endosomal compartments of rat liver hepatocytes was studied by subcellular fractionation and EM. The kinetics of disappearance of radiolabeled asialofetuin from light endosomes prepared on Ficoll gradients were the same as the kinetics of disappearance of asialoorosomucoid-horse radish peroxidase reaction products from intracellular membrane-bound structures in the blood sinusoidal regions of hepatocytes. The light endosomes were therefore identifiable as being derived from the peripheral early endosome compartment. In contrast, the labeling of dense endosomes from the middle of the Ficoll gradient correlated with EM showing large numbers of reaction product-containing structures in the nonsinusoidal parts of the hepatocyte. In cell-free, postmitochondrial supernatants, we have previously observed that dense endosomes, but not light endosomes, interact with lysosomes. Cell-free interaction between isolated dense endosomes and lysosomes has now been reconstituted and analyzed in three ways: by transfer of radiolabeled ligand from endosomal to lysosomal densities, by a fluorescence dequenching assay which can indicate membrane fusion, and by measurement of content mixing. Maximum transfer of radiolabel to lysosomal densities required ATP and GTP plus cytosolic components, including N-ethylmaleimide-sensitive factor(s). Dense endosomes incubated in the absence of added lysosomes did not mature into vesicles of lysosomal density. Content mixing, and hence fusion, between endosomes and lysosomes was maximal in the presence of cytosol and ATP and also showed inhibition by N-ethyl-maleimide. Thus, we have demonstrated that a fusion step is involved in the transfer of radiolabeled ligand from an isolated endosome fraction derived from the nonsinusoidal regions of the hepatocyte to preexisting lysosomes in a cell-free system.  相似文献   

12.
1. A gamma camera was used to monitor continuously the uptake of radiolabelled polymeric immunoglobulin A (pIgA) into the rat body after intravenous injection. Uptake into liver was fast but, since the peak of liver labelling occurred only after 9-15 min, it was not sufficiently rapid to constitute a pulse dose. A perfused, isolated rat liver system was therefore established which could be given a single pass dose of pIgA; a variety of tests showed such livers remained viable for at least 3 h and could be subsequently fractionated on Ficoll and Nycodenz gradients with normal distributions of marker enzymes. 2. Subcellular fractionation at different times after a single pass dose of pIgA showed that whilst pIgA appeared sequentially in sinusoidal plasma membrane, light endosomes, dense endosomes, very dense endosomes and lysosomes as in vivo, the predominance of pIgA in the light endosome compartment disappeared much earlier than after injection in vivo of pIgA, presumably because this compartment was not being continuously loaded over the first 10-15 min. The time course of appearance of label in bile was unchanged. A large excess of unlabelled asialofetuin did not change these patterns, indicating that the asialoglycoprotein receptor was not involved. 3. Low doses of the microtubule agent colchicine reduced the proportion of pIgA reaching the bile, but subcellular fractionation of treated liver showed that distribution of label amongst liver fractions was little changed, although the overall liver pIgA content had increased. This would suggest that pIgA did not remain in the common compartment which could have supplied bile or lysosomes but rather flowed out of it as rapidly as in untreated liver but towards those compartments supplying the lysosomes. 4. Experiments with nocodazole, which reversibly disrupts microtubules, showed that very little of the pIgA taken into an inhibited liver appeared in the bile after nocodazole was removed 30 min later, even though a second dose of pIgA, given after nocodazole removal, appeared in bile with a normal time course. The first dose of pIgA must therefore have passed beyond the compartments competent to supply the bile before nocodazole was removed. Such compartments were undamaged since the second dose of pIgA appeared in bile normally. We therefore conclude that the bulk of pIgA must be supplied to the bile from light or dense endosomes rather than from very dense endosomes and lysosomes.  相似文献   

13.
Using a cell-free content mixing assay containing rat liver endosomes and lysosomes in the presence of pig brain cytosol, we demonstrated that after incubation at 37°C, late endosome–lysosome hybrid organelles were formed, which could be isolated by density gradient centrifugation. ImmunoEM showed that the hybrids contained both an endocytosed marker and a lysosomal enzyme. Formation of the hybrid organelles appeared not to require vesicular transport between late endosomes and lysosomes but occurred as a result of direct fusion. Hybrid organelles with similar properties were isolated directly from rat liver homogenates and thus were not an artifact of cell-free incubations. Direct fusion between late endosomes and lysosomes was an N-ethylmaleimide–sensitive factor– dependent event and was inhibited by GDP-dissociation inhibitor, indicating a requirement for a rab protein. We suggest that in cells, delivery of endocytosed ligands to an organelle where proteolytic digestion occurs is mediated by direct fusion of late endosomes with lysosomes. The consequences of this fusion to the maintenance and function of lysosomes are discussed.  相似文献   

14.
Most ligands which are taken up by macrophages are transported to lysosomes where they are degraded to their constituents by a concert of acid hydrolases. This process requires a number of intracellular events which result in the transport of ligands from light density endosomes to the more dense lysosomes. In contrast, our studies have shown that macrophages may process some incoming ligands in endosomes (Diment, S., and Stahl, P. D. (1985) J. Biol. Chem. 260, 15311-15317) and that cathepsin D, an aspartyl protease, is localized in these organelles (Diment, S., Leech, M. S., and Stahl, P. D. (1988) J. Biol. Chem. 263, 6901-6907). Using rabbit alveolar macrophages, which can be subjected to subcellular fractionation, we have traced the intracellular transport and processing of bovine parathyroid hormone (PTH-(1-84]. We present evidence that macrophages internalize PTH-(1-84). Once in endosomes the hormone is cleaved to fragments which include a bioactive peptide, PTH-(1-34), and then the fragments are returned to the extracellular medium, without delivery to lysosomes. The entire cycle from initial binding to release of PTH-(1-34) is achieved within 10-15 min, a time period consistent with findings in vivo. Our data provide evidence for a novel route for processing of an endocytosed ligand.  相似文献   

15.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

16.
A ubiquitin-binding endosomal protein machinery is responsible for sorting endocytosed membrane proteins into intraluminal vesicles of multivesicular endosomes (MVEs) for subsequent degradation in lysosomes. The Hrs-STAM complex and endosomal sorting complex required for transport (ESCRT)-I, -II and -III are central components of this machinery. Here, we have performed a systematic analysis of their importance in four trafficking pathways through endosomes. Neither Hrs, Tsg101 (ESCRT-I), Vps22/EAP30 (ESCRT-II), nor Vps24/CHMP3 (ESCRT-III) was required for ligand-mediated internalization of epidermal growth factor (EGF) receptors (EGFRs) or for recycling of cation-independent mannose 6-phosphate receptors (CI-M6PRs) from endosomes to the trans-Golgi network (TGN). In contrast, both Hrs and ESCRT subunits were equally required for degradation of both endocytosed EGF and EGFR. Whereas depletion of Hrs or Tsg101 caused enhanced recycling of endocytosed EGFRs, this was not the case with depletion of Vps22 or Vps24. Depletion of Vps24 instead caused a strong increase in the levels of CI-M6PRs and a dramatic redistribution of the Golgi and the TGN. These results indicate that, although Hrs-STAM and ESCRT-I, -II and -III have a common function in degradative protein sorting, they play differential roles in other trafficking pathways, probably reflecting their functions at distinct stages of the endocytic pathway.  相似文献   

17.
The internalization of surface-bound diphtheria toxin (DT) in BS-C-1 cells correlated with its appearance in intracellular endosomal vesicles; essentially no toxin appeared within secondary lysosomal vesicles. In contrast, internalized epidermal growth factor (EGF) was localized within both endosomal and lysosomal vesicles. Upon preincubation of cells with leupeptin, a lysosomal protease inhibitor, a threefold increase in the accumulation of EGF into lysosomes was observed. Under identical conditions, essentially all of the diphtheria toxin remained within endosomes (less than 2% of the intracellular diphtheria toxin accumulated in the lysosomal fraction), indicating that the inability to detect diphtheria toxin in lysosomes was not due to its rapid turnover within this vesicle. Following internalization of EGF or DT, up to 40% of the ligand appeared in the medium as TCA-soluble radioactivity. EGF degradation was partially leupeptin-sensitive and markedly NH4Cl-sensitive, indicating lysosomal degradation. In contrast, DT A-fragment degradation was resistant to these inhibitors, while B-fragment showed only partial sensitivity. These data suggest that the bulk of endocytosed diphtheria toxin is localized within endosomes and degraded by a pathway essentially independent of lysosomes.  相似文献   

18.
Isolated rat hepatocytes take up and degrade [125I]tyramine-cellobiose-labelled asialofetuin [( 125I]TC-AF). The labelled degradation products are trapped at the site of degradation. The intracellular transport of [125I]TC-AF was studied by means of cell fractionation in Nycodenz gradients. The labelled ligand was kept in a small, slowly sedimenting vesicle during the first minutes after uptake in the cells, and was then transferred to a larger endosome. Labelled degradation products first appeared in an organelle with the same density distribution as the larger endosome and then in a denser organelle. These observations suggest that two types of lysosome, 'light' lysosomes and 'dense', are sequentially involved in the degradation of the asialoglycoprotein. The bulk of the lysosomal enzymes is associated with the dense lysosome.  相似文献   

19.
Ligand-induced down-regulation of the epidermal growth factor receptor (EGFR) comprises activation of two sequential transport steps. The first involves endocytic uptake by clathrin-coated vesicles, the second transfer of endocytosed EGFR from endosomes to lysosomes. Here we demonstrate that the second transport step requires a domain of the EGFR that encompasses residues 985-996 and was previously found to interact with actin. Deletion of domain 989-994 (Delta989-994 EGFR) did not interfere with EGFR uptake but completely abrogated its degradation. In contrast, both uptake and degradation were affected for K721A EGFR, a kinase-deficient EGFR mutant. To measure intracellular EGFR sorting, we developed a novel cell fractionation assay toward which cells were co-transfected for chicken hepatic lectin, a receptor for agialoglycoproteins. These cells were incubated with agialofetuin-coupled colloidal gold, which was targeted to lysosomes after receptor-mediated endocytosis. Compartments within the lysosomal pathway gained buoyant density because of the presence of colloidal gold and could be isolated from cell homogenates by ultracentrifugation through a high-density sucrose cushion. In contrast to endocytosed wild type EGFR, both Delta989-994 EGFR and K721A EGFR were largely not retrieved in gold-containing endocytic compartments. These results are supported with morphological data. We conclude that sorting of endocytosed EGFR into the degradation pathway requires both its kinase activity and actin-binding domain.  相似文献   

20.
The transferrin receptor of human skin fibroblasts was studied as an in vitro model target antigen receptor for interaction with protein-polymer conjugates having potential for targeted drug delivery. Pinocytic uptake of 125I-labelled N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugated to monoclonal antibody B3/25 (specific for the transferrin receptor) or transferrin was up to 9-fold greater than uptake of the parent HPMA copolymer. The ability of these conjugates to bind specifically was confirmed by Scatchard analysis. Pinocytic internalisation was dependent on the molecular mass of the conjugate. Intracellular routing following internalisation was evaluated using density-gradient centrifugation. Unmodified HPMA copolymer was transferred via the endosomal compartment into secondary lysosomes, where, being resistant to degradation, it accumulated. Although the majority of endocytosed transferrin is recycled via the endosome, it was shown that any transferrin reaching the lysosomes was rapidly degraded and low-molecular-weight degradation products were released. Monoclonal antibody B3/25 showed a subcellular distribution consistent with prolongation on the cell surface, followed by internalisation and subcellular trafficking, via endosomes, into the lysosomal compartment, with subsequent degradation. Conjugation of protein to HPMA copolymer increased lysosomal accumulation of polymer up to 9-fold, with no detectable degradation of conjugate. The data presented here have implications regarding clinical potential of protein-HPMA copolymer conjugates designed for lysosomotropic drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号