首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large Hydrophobic Residues (LHR) such as phenylalanine, isoleucine, leucine, methionine and valine play an important rolein protein structure and activity. We describe the role of LHR in complete set of protein sequences in 15 different species.That is the distribution of LHR in different proteins of different species is reported. It is observed that the proteins prefer tohave 27% of large hydrophobic residues in total and all along the sequence. It is also observed that proteins accumulate moreLHR in its active sites. A window analysis on these protein sequences shows that the 27% of LHR is more frequent atwindow length of 45 amino acids. The influenza virus and P. falciparum show a random distribution of LHR in its proteinscompared to other model organisms.  相似文献   

2.
Undecagold cluster labeling of reactive cysteine residues in numerous proteins has allowed the labeled sites to be identified by electron microscopy, providing high-resolution information on the location and orientation of subunits in oligomeric enzymes, virus capsids, crystalline sheets of membrane proteins, and muscle thin filaments. The range of applications of undecagold cluster labeling has been greatly extended by the availability of site-directed mutagenesis to introduce cysteine residues at sites of interest. In this paper I discuss factors that can influence the extent and specificity of labeling, methods for biochemical analysis of undecagold-labeled proteins, and the effects of undecagold cluster labeling on biological activity.  相似文献   

3.
A new strategy for dual site-selective labeling of proteins that uses metabolically incorporated selenomethionine as a target for covalent modification by iodoacetamide derivatives, forming selenonium salts, is described. In the absence of free cysteine, labeling is specific and efficient. Dual-targeted labeling of a protein can be achieved with combinations of unique cysteine and methionine residues, if the cysteine is labeled first with a maleimide or another reagent that does not react with the selenomethionine. The method should be useful in biophysical applications such as fluorescence energy transfer.  相似文献   

4.
Porphyrinmaleimides were synthesized and characterized. The thiol-containing amino acid L-cysteine reacted with 58% yield with these porphyrins to form bioconjugate adducts. The new thiol-active reagents were labeled cytoplasmic cysteine 140 and 316 in rhodopsin (Rh), a G protein coupled receptor (GPCR).  相似文献   

5.
A method for the complete S sulfonation of cysteine residues in proteins   总被引:1,自引:0,他引:1  
W W Chan 《Biochemistry》1968,7(12):4247-4254
  相似文献   

6.
Summary Conditions are described for the reduction and alkylation of cysteines in peptides and proteins with volatile reagents by use of triethylphosphine as reductant, bromopropane as alkylating reagent and triethylamine as base. Alkylated samples need only be vacuum dried prior to subsequent analysis steps. Alkylated samples have been acid hydrolyzed and analyzed on an amino acid analyzer with recoveries of cysteine within 10% of the expected value. Alkylated samples have been directly applied to a sequencer membrane, dried on the surface and cysteines identified by sequence analysis without additional wash steps. In addition proteins blotted onto PVDF have been alkylatedin situ and sequenced with identification of cysteines. On the analyzer and sequencer the S-propylcysteine derivative elutes at a unique position allowing for the unambiguous identification of cysteine. Cysteine residues are quantitativly alkylated under the conditions developed. The ease of this procedure allows the routine analysis of cysteine in peptides and proteins without additional, time consuming repurification or dialysis steps.Abbreviations dptu diphenylthiourea - dmptu dimethylphenylthiourea - prop-cys S-propylcysteine  相似文献   

7.
S L Flitsch  H G Khorana 《Biochemistry》1989,28(19):7800-7805
In developing new approaches to structural studies of polytopic transmembrane proteins, we have prepared bacteriorhodopsin mutants containing single cysteine residues at selected sites in different topological domains. Four such mutants were prepared: Gly-72----Cys and Ser-169----Cys in the presumed looped-out regions on the opposite sides of the membrane bilayer and Thr-90----Cys and Leu-92----Cys in the membrane-embedded helix C. The four mutants folded and regenerated the characteristic chromophore in detergent/phospholipid micelles and pumped protons like the wild-type bacteriorhodopsin. After reconstitution in asolectin vesicles, the sulfhydryl groups in the mutants Gly-72----Cys and Ser-169----Cys reacted with iodo[2-3H]acetic acid, while the sulfhydryl groups in the membrane-embedded mutants, Thr-90----Cys and Leu-92----Cys, did not. The sulfhydryl groups in all four mutants could be derivatized in the denatured state by reaction with iodoacetic acid or 6-acryloyl-2-(dimethylamino)naphthalene. Of these derivatives, the two from the mutants Gly-72----Cys and Ser-169----Cys folded like the wild-type bacterioopsin, whereas of the two from the helix C mutants, Thr-90----Cys and Leu-92----Cys, only the latter folded normally. However, the folding of Leu-92----Cys was also impaired when treated with the bulky 5-(iodoacetamido)fluorescein. The reactivity and the folding behavior of the cysteine mutants can thus report on the topographic domain as well as on the orientation of the helices within the membrane.  相似文献   

8.
Adjacent cysteine residues as a redox switch.   总被引:1,自引:0,他引:1  
Oxidation of adjacent cysteine residues into a cystine forms a strained eight-membered ring. This motif was tested as the basis for an enzyme with an artificial redox switch. Adjacent cysteine residues were introduced into two different structural contexts in ribonuclease A (RNase A) by site-directed mutagenesis to produce the A5C/A6C and S15C/S16C variants. Ala5 and Ala6 are located in an alpha-helix, whereas Ser15 and Ser16 are located in a surface loop. Only A5C/A6C RNase A had the desired property. The catalytic activity of this variant decreases by 70% upon oxidation. The new disulfide bond also decreases the conformational stability of the A5C/A6C variant. Reduction with dithiothreitol restores full enzymatic activity. Thus, the insertion of adjacent cysteine residues in a proper context can be used to modulate enzymatic activity.  相似文献   

9.
A method has been developed for specific enzymic cleavage of polypeptides at the N-terminal side of modified cysteine residues. Lysine residues are blocked by trifluoroacetylation and cysteine residues subsequently converted to the 2-aminoethyl derivatives. Digestion of the modified polypeptide with the lysine-specific protease from Armillaria mellea (patented by Walton et al., 1972) occurs only at 2-aminoethylcysteine residues. With the beta chain of human haemoglobin, which contains 2 cysteine and 11 lysine residues, cleavage was observed at both modified cysteines but at none of the lysines. In the case of a polypeptide from bee venom which contains 4 half-cystine and 5 lysine residues, cleavage occurred at only 2 of the modified cysteines and also at 2 lysine residues. The pattern of cleavage in the latter case can be interpreted in terms of the amino acid sequence of the polypeptide.  相似文献   

10.
Glucocerebrosidase, the deficient enzyme in Gaucher disease, catalyzes the cleavage of the beta-glycosidic linkage of glucosylceramide. A previous study on the enzyme identified three disulfide bridges and a single sulfhydryl [Lee, Y., Kinoshita, H., Radke, G., Weiler, S., Barranger, J.A. and Tomich, J.M. (1995) Position of the sulfhydryl group and the disulfide bonds of human glucocerebrosidase. J. Protein Chem. 14(3), 127-137] but recent publication of the X-ray structure identifies only two disulfide bridges with three free sulfhydryls [Dvir, H., Harel, M., McCarthy, A.A., Toker, L., Silman, I., Futerman, A.H. and Sussman, J.L. (2003) X-ray structure of human acid-beta-glucosidase, the defective enzyme in Gaucher disease. EMBO. 4(7), 704-709]. Using chemical modifications, acid cleavage and enzymatic digestion methods, we report that three free sulfhydryls exist and that the remaining four cysteines form two disulfide bonds located within the first 25 amino-terminal residues, supporting the X-ray structure.  相似文献   

11.
12.
13.
The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.  相似文献   

14.
FtsH of Escherichia coli is an essential membrane-integrated ATP-dependent protease. We cloned a gene for an FtsH homolog (T. FtsH) from Thermus thermophilus HB8, expressed it in E. coli, and purified the expressed protein. ATPase activity of T.FtsH was activated by proteins with unfolded structure ( alpha-casein and pepsin), and T.FtsH digested these proteins in an ATP-, Zn(2+)-dependent manner. alpha-Lactalbumin was digested by T.FtsH when it was largely unfolded, but not in its native form. Analysis of the proteolytic products revealed that, in most cases, T.FtsH cleaved the C-terminal side of hydrophobic residues and produced a characteristic set of small peptides (<30 kDa) without releasing a large intermediate. Thus, T.FtsH recognizes the unfolded structure of the proteins and progressively digests them at the expense of ATP. A soluble domain of T.FtsH, which lacked the N-terminal two transmembrane helices, was also prepared but was found to retain neither ATPase nor protease activities. Thus, the membrane segment appeared to be indispensable for these activities of T.FtsH.  相似文献   

15.
We report the near infrared absorption spectra of cyanomethemoglobin and cyanometmyoglobin in two different solvents (deuterated solutions containing 65% v/v glycerol(OD)3 or 65% v/v ethylene glycol(OD)2). At 25 K the spectra show a clearly resolved fine structure that can be accounted for by considering a strong coupling of the porphyrin-to-iron charge transfer transitions with a single vibrational mode at 365 cm-1. The coupling constants depend on both the specific electronic transition and the protein surrounding the chromophore, indicating once more the specificity of heme globin interactions.  相似文献   

16.
17.
Two hemoglobins with cysteine residues highly reactive toward electrophiles have been identified and characterized. Cys-125beta of guinea pig hemoglobin has a low pK(a) and forms conjugates with electrophiles more quickly than glutathione and several orders of magnitude more quickly than other protein thiols. This cysteine is capable of intercepting benzoquinone, a known carcinogenic metabolite, before other protein nucleophiles can be modified. Cys-13beta of mouse hemoglobin was observed to conjugate with electrophiles as quickly as glutathione. The structural basis of reactivity is different in the two hemoglobins and is analyzed in terms of hydrogen-bonding, solvent accessibility, and helix-dipole contributions. Complementing a previously characterized highly reactive cysteine in rat hemoglobin, identification of these cysteines suggests that the reactivity of these hemoglobins could represent a common function as a detoxification sink against carcinogens.  相似文献   

18.
19.
20.
Thiol-dependent redox systems are involved in regulation of diverse biological processes, such as response to stress, signal transduction, and protein folding. The thiol-based redox control is provided by mechanistically similar, but structurally distinct families of enzymes known as thiol oxidoreductases. Many such enzymes have been characterized, but identities and functions of the entire sets of thiol oxidoreductases in organisms are not known. Extreme sequence and structural divergence makes identification of these proteins difficult. Thiol oxidoreductases contain a redox-active cysteine residue, or its functional analog selenocysteine, in their active sites. Here, we describe computational methods for in silico prediction of thiol oxidoreductases in nucleotide and protein sequence databases and identification of their redox-active cysteines. We discuss different functional categories of cysteine residues, describe methods for discrimination between catalytic and noncatalytic and between redox and non-redox cysteine residues and highlight unique properties of the redox-active cysteines based on evolutionary conservation, secondary and three-dimensional structures, and sporadic replacement of cysteines with catalytically superior selenocysteine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号