首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.  相似文献   

2.
F Avbelj 《Biochemistry》1992,31(27):6290-6297
A method for calculation of the free energy of residues as a function of residue burial is proposed. The method is based on the potential of mean force, with a reaction coordinate expressed by residue burial. Residue burials are calculated from high-resolution protein structures. The largest individual contributions to the free energy of a residue are found to be due to the hydrophobic interactions of the nonpolar atoms, interactions of the main chain polar atoms, and interactions of the charged groups of residues Arg and Lys. The contribution to the free energy of folding due to the uncharged side chain polar atoms is small. The contribution to the free energy of folding due to the main chain polar atoms is favorable for partially buried residues and less favorable or unfavorable for fully buried residues. Comparison of the accessible surface areas of proteins and model spheres shows that proteins deviate considerably from a spherical shape and that the deviations increase with the size of a protein. The implications of these results for protein folding are also discussed.  相似文献   

3.
A detailed analysis of the composition and properties of hydrophobic nuclei and microclusters in pancreatic ribonuclease A (RNase A) has been carried out. Distance calculations for all noncovalently bonded atoms revealed that the average number of nonpolar contacts between a side chain of an amino acid and its neighbors is substantially larger if it involves hydrophobic residues rather than nonhydrophobic ones. However, the difference decreased when the number of contacts per nonpolar group and/or atom were calculated. Three main nuclei and five microclusters were identified, and their quantitative parameters were calculated. These nuclei include hydrophobic residues with a substantial number of nonpolar contacts with the environment (Phe 8, Phe 120, Phe 46, Tyr 25, Tyr 97, Ile 107, Leu 35, Ile 81, Val 54, Val 108, Met 29, Met 30). Hydrophobic nuclei of RNase A differ in shape and in composition, in the number of intranuclear contacts and of associated residues, as well as in their internal mobility. All eight cysteine residues are involved in nonpolar interactions with amino acid residues of hydrophobic nuclei. Active site amino acid residues of RNase A form a noncovalent contact network comprised of themselves, as well as of many conserved residues from hydrophobic nuclei. Sequence alignment with some other members of the RNase A family of proteins shows remarkable similarity in positions and in conservation of the main nonpolar residues, comprising cores of two (out of three) hydrophobic nuclei. A correlation was shown to exist between the average density of contacts for side-chain atoms and the number of amino acids to be found in the appropriate positions in the sequences of related mammalian ribonucleases. However, there are certain amino acid positions in the third, smaller nucleus, which are highly variable within the family. Taking into account that this nucleus is composed of residues belonging to different elements of the secondary structure, it is likely that the mutual orientation of these elements can be somehow different for these proteins.  相似文献   

4.
Kakuta Y  Horio T  Takahashi Y  Fukuyama K 《Biochemistry》2001,40(37):11007-11012
Escherichia coli ferredoxin (Fdx) is an adrenodoxin-type [2Fe-2S] ferredoxin. Recent genetic analyses show that it has an essential role in the maturation of various iron-sulfur (Fe-S) proteins. Fdx probably functions as a component of the complex machinery responsible for the biogenesis of Fe-S clusters. Its crystal structure was determined by the multiple-wavelength anomalous dispersion method using the iron atoms in the [2Fe-2S] cluster of the protein and then refined to R and R(free) values of 0.255 and 0.278, respectively, at 1.7 A resolution. The structure of Fdx is similar to the structures of bovine adrenodoxin (Adx) and Pseudomonas putida putidaredoxin (Pdx) whose respective root-mean-square deviations of the corresponding Calpha atoms are 1.8 and 2.2 A. This analysis also revealed the structure of the C-terminal residues protruding into the solvent, which is missing in Adx and Pdx. The [2Fe-2S] cluster is located at the edge of the molecule and bonds with the Sgamma atoms of Cys42, Cys48, Cys51, and Cys87. Electrostatic potential analysis showed that the surface of Fdx has two negatively charged areas separated by a hydrophobic lane. One is conserved on the surface of Adx which is an area of interaction with adrenodoxin reductase. Cys46 is located on the molecular surface in the vicinity of the [2Fe-2S] cluster, an indication that it may be involved in Fe-S cluster formation.  相似文献   

5.
Amino acids in peptides and proteins display distinct preferences for alpha-helical, beta-strand, and other conformational states. Various physicochemical reasons for these preferences have been suggested: conformational entropy, steric factors, hydrophobic effect, and backbone electrostatics; however, the issue remains controversial. It has been proposed recently that the side-chain-dependent solvent screening of the local and non-local backbone electrostatic interactions primarily determines the preferences not only for the alpha-helical but also for all other main-chain conformational states. Side-chains modulate the electrostatic screening of backbone interactions by excluding the solvent from the vicinity of main-chain polar atoms. The deficiency of this electrostatic screening model of amino acid preferences is that the relationships between the main-chain electrostatics and the amino acid preferences have been demonstrated for a limited set of six non-polar amino acid types in proteins only. Here, these relationships are determined for all amino acid types in tripeptides, dekapeptides, and proteins. The solvation free energies of polar backbone atoms are approximated by the electrostatic contributions calculated by the finite difference Poisson-Boltzmann and the Langevin dipoles methods. The results show that the average solvation free energy of main-chain polar atoms depends strongly on backbone conformation, shape of side-chains, and exposure to solvent. The equilibrium between the low-energy beta-strand conformation of an amino acid (anti-parallel alignment of backbone dipole moments) and the high-energy alpha conformation (parallel alignment of backbone dipole moments) is strongly influenced by the solvation of backbone polar atoms. The free energy cost of reaching the alpha conformation is by approximately 1.5 kcal/mol smaller for residues with short side-chains than it is for the large beta-branched amino acid residues. This free energy difference is comparable to those obtained experimentally by mutation studies and is thus large enough to account for the distinct preferences of amino acid residues. The screening coefficients gamma(local)(r) and gamma(non-local)(r) correlate with the solvation effects for 19 amino acid types with the coefficients between 0.698 to 0.851, depending on the type of calculation and on the set of point atomic charges used. The screening coefficients gamma(local)(r) increase with the level of burial of amino acids in proteins, converging to 1.0 for the completely buried amino acid residues. The backbone solvation free energies of amino acid residues involved in strong hydrogen bonding (for example: in the middle of an alpha-helix) are small. The hydrogen bonded backbone is thus more hydrophobic than the peptide groups in random coil. The alpha-helix forming preference of alanine is attributed to the relatively small free energy cost of reaching the high-energy alpha-helix conformation. These results confirm that the side-chain-dependent solvent screening of the backbone electrostatic interactions is the dominant factor in determining amino acid conformational preferences.  相似文献   

6.
The hydrophobic interaction is the main driving force for protein folding. Here, we address the question of what is the optimal fraction, f of hydrophobic (H) residues required to ensure protein collapse. For very small f (say f<0.1), the protein chain is expected to behave as a random coil, where the H residues are "wrapped" locally by polar (P) residues. However, for large enough f this local coverage cannot be achieved and the thermodynamic alternative to avoid contact with water is burying the H residues in the interior of a compact chain structure. The interior also contains P residues that are known to be clustered to optimize their electrostatic interactions. This means that the H residues are clustered as well, i.e. they effectively attract each other like the H-monomers in Dill's HP lattice model. Previously, we asked the question: assuming that the H monomers in the HP model are distributed randomly along the chain, what fraction of them is required to ensure a compact ground state? We claimed there that f approximately p(c), where p(c) is the site percolation threshold of the lattice (in a percolation experiment, each site of an initially empty lattice is visited and a particle is placed there with a probability p. The interest is in the critical (minimal) value, p(c), for which percolation occurs, i.e. a cluster connecting the opposite sides of the lattice is created). Due to the above correspondence between the HP model and real proteins (and assuming that the H residues are distributed at random) we suggest that the experimental f should lead to percolating clusters of H residues over the highly dense protein core, i.e. clusters of the core size. To check this theory, we treat a simplified model consisting of H and P residues represented by their alpha-carbon atoms only. The structure is defined by the C(alpha)-C(alpha) virtual bond lengths, angles and dihedral angles, and the X-ray structure is best-fitted onto a face-centered cubic lattice. Percolation experiments are carried out for 103 single-chain proteins using six different hydrophobic sets of residues. Indeed, on average, percolating clusters are generated, which supports our theory; however, some sets lead to a better core coverage than others. We also calculate the largest actual hydrophobic cluster of each protein and show that, on average, these clusters span the core, again in accord with our theory. We discuss the effect of protein size, deviations from the average picture, and implications of this study for defining reliable simplified models of proteins.  相似文献   

7.
Non-bonded energy of 16 proteins was calculated using the atomic co-ordinates obtained by X-ray crystallography. The curve of total energy against the number of atoms in proteins is approximately linear with a slight concaved shape. According to a linear equation to fit the curve, the extrapolated length of a polypeptide chain of a globular shape is expected to be 18 residues, which corresponds conceivably to an approximate size of nucleus for a folding of the polypeptide chain. Contributions from short-range and medium-range energies are always much greater than those from long-range energy for all the proteins and there seems to exist a change of each contribution in a range from 1200 to 1700 atoms. The energies with a lag less than four residues are a major part of the total energy and the contribution of energy from main-chain atoms is considerably higher than that from side-chain atoms. Side-chain atoms of a residue have a tendency to interact more strongly with main-chain atoms of N-terminal, than with those of C-terminal side of the residue, indicating asymmetry of the interaction in a protein. Amino acid residues in proteins may be divided into three groups by the order of strength of average energy. The first group exhibiting strong interaction consists mainly of hydrophobic amino acids and the third group consists of hydrophilic ones corresponding to the location in a protein molecule. Cys, val, leu and met are important for medium-range and long-range energies; gly and ala for medium-range energy; ile, trp, phe, tyr and arg for long-range energy. One simple application of the average energy of amino acid residues is illustrated to estimate local energy of a segment of nine residues given by a protein sequence. There is a good correlation between the curve computed by the average energy and the experimental curve for myoglobin.  相似文献   

8.
Biogenesis of mitochondrial iron-sulfur (Fe/S) cluster proteins requires the interaction of multiple proteins with the highly conserved 14-kDa scaffold protein Isu, on which clusters are built prior to their transfer to recipient proteins. For example, the assembly process requires the cysteine desulfurase Nfs1, which serves as the sulfur donor for cluster assembly. The transfer process requires Jac1, a J-protein Hsp70 cochaperone. We recently identified three residues on the surface of Jac1 that form a hydrophobic patch critical for interaction with Isu. The results of molecular modeling of the Isu1-Jac1 interaction, which was guided by these experimental data and structural/biophysical information available for bacterial homologs, predicted the importance of three hydrophobic residues forming a patch on the surface of Isu1 for interaction with Jac1. Using Isu variants having alterations in residues that form the hydrophobic patch on the surface of Isu, this prediction was experimentally validated by in vitro binding assays. In addition, Nfs1 was found to require the same hydrophobic residues of Isu for binding, as does Jac1, suggesting that Jac1 and Nfs1 binding is mutually exclusive. In support of this conclusion, Jac1 and Nfs1 compete for binding to Isu. Evolutionary analysis revealed that residues involved in these interactions are conserved and that they are critical residues for the biogenesis of Fe/S cluster protein in vivo. We propose that competition between Jac1 and Nfs1 for Isu binding plays an important role in transitioning the Fe/S cluster biogenesis machinery from the cluster assembly step to the Hsp70-mediated transfer of the Fe/S cluster to recipient proteins.  相似文献   

9.
Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20-22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on-pathway folding and off-pathway aggregate formation, we found that long sequences of consecutive hydrophobic residues promoted aggregation within the model, even controlling for overall hydrophobic content. We report here on an analysis of the frequencies of different lengths of contiguous blocks of hydrophobic residues in a database of amino acid sequences of proteins of known structure. Sequences of three or more consecutive hydrophobic residues are found to be significantly less common in actual globular proteins than would be predicted if residues were selected independently. The result may reflect selection against long blocks of hydrophobic residues within globular proteins relative to what would be expected if residue hydrophobicities were independent of those of nearby residues in the sequence.  相似文献   

10.
Understanding the factors influencing the folding rate of proteins is a challenging problem. In this work, we have analyzed the role of non-covalent interactions for the folding rate of two-state proteins by free-energy approach. We have computed the free-energy terms, hydrophobic, electrostatic, hydrogen-bonding and van der Waals free energies. The hydrophobic free energy has been divided into the contributions from different atoms, carbon, neutral nitrogen and oxygen, charged nitrogen and oxygen, and sulfur. All the free-energy terms have been related with the folding rates of 28 two-state proteins with single and multiple correlation coefficients. We found that the hydrophobic free energy due to carbon atoms and hydrogen-bonding free energy play important roles to determine the folding rate in combination with other free energies. The normalized energies with total number of residues showed better results than the total energy of the protein. The comparison of amino acid properties with free-energy terms indicates that the energetic terms explain better the folding rate than amino acid properties. Further, the combination of free energies with topological parameters yielded the correlation of 0.91. The present study demonstrates the importance of topology for determining the folding rate of two-state proteins.  相似文献   

11.
In the DNA-binding domain of the c-myb protooncogene product (c-Myb) which consists of three repeats of 51-52 amino acids, there are 3 perfectly conserved tryptophans in each repeat. Site-directed mutagenesis of these tryptophans showed that any single or multiple mutations of tryptophan to hydrophilic residues or alanine abolished or greatly reduced the sequence-specific DNA-binding activity, but mutations to hydrophobic amino acids retained considerable activity. Raman spectroscopic study showed that these tryptophans were buried in the protein core. These 3 tryptophans are proposed to form a cluster in the hydrophobic core in each repeat. This hypothetical structure is referred to as the "tryptophan cluster," and it may represent a characteristic property of a group of DNA-binding proteins including the myb- and ets-related proteins.  相似文献   

12.
A new computer program (CORE) is described that predicts core hydrophobic sequences of predetermined target protein structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to free energies of unfolding (deltaGu), melting temperatures (Tm), and cooperativity. Metropolis-driven simulated annealing and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two smaller proteins tested (Gbeta1, 11 core amino acids; 434 cro, 10 core amino acids), the native sequence was regenerated as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two larger proteins tested (myoglobin, 32 core amino acids; methionine aminopeptidase, 63 core amino acids), sequences with corresponding side-chain conformations remarkably similar to that of native were predicted.  相似文献   

13.
An examination of the binding sites of four carbohydrate binding proteins (Escherichia coli lactose repressor, E. coli arabinose-binding protein, yeast hexokinase A and Concanavalin A) revealed certain similarities of amino acid sequences and residues forming hydrogen bonds and hydrophobic interactions with the bound carbohydrate. These were: (i) Asx-Asx, hydrogen bonding to the pyranose ring oxygen and anomeric-OH group; (ii) Arg-X-X-X-(Ser/Thr), or the reverse sequence, with the Arg hydrogen bonding to the pyranose ring oxygen; (iii) Lys-(Ser/Thr)-X-X-Asp, or the reverse sequence and with interchange of the Lys-(Ser/Thr) positions, with hydrogen bonding of either or both the Lys and Asp residues to the -OH groups at carbons 2, 3, 4 or 6; (iv) a diaromatic sequence with possible hydrophobic interactions to the faces of the pyranose ring structure. An algorithm was devised to search the amino acid sequences of a large number of proteins, those known to bind carbohydrates as well as those without known carbohydrate-binding activities, for the four amino acid sequence criteria. The algorithm incorporated a weighted distance value (WDV) to assess the approximate distance between any two criteria, with the WDV being based on the predicted secondary structure of the protein amino acid sequence. When the algorithm using criteria 1 and 2 plus the WDV was applied to the sequences of 125 proteins, the method indicated the presence of the potential carbohydrate-binding site motif for 42% of proteins with known carbohydrate binding, only 8% of proteins were predicted as false positives, and the accuracy of the method was calculated to be 61.6%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Toxicity domain in presynaptically toxic phospholipase A2 of snake venom   总被引:1,自引:0,他引:1  
About 42 complete amino-acid sequences of phospholipases A2 (phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) are known, including those of 13 presynaptically toxic enzymes, but the structural features responsible for the neurotoxicity and distinguishing the toxins from the non-neurotoxic enzymes are far from being clear. In this study, we examined the charged-residue distributions and hydrophobic characteristics based on the sequence data and the predicted tertiary structure and proposed a possible toxicity domain. We found that the presynaptically toxic enzymes have three or four more basic amino-acid residues than the non-neurotoxic enzymes at positions 59, 60, 65, 70-73 and 97 or 98. These residues appear to cluster near the surface region at the N-terminal side. The cationic nature of this basic cluster in the toxin is enhanced by the alpha-amino group of the N-terminus and the dipole moment of helices 96-110 and 1-10. Moreover, these toxic-site residues are usually associated with hydrophobic regions at 1-7, 64-81 and 97-109.  相似文献   

15.
We have developed a new combined approach for ab initio protein structure prediction. The protein conformation is described as a lattice chain connecting C(alpha) atoms, with attached C(beta) atoms and side-chain centers of mass. The model force field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the regularities of protein structures. The combination of these energy terms is optimized through the maximization of correlation for 30 x 60,000 decoys between the root mean square deviation (RMSD) to native and energies, as well as the energy gap between native and the decoy ensemble. To accelerate the conformational search, a newly developed parallel hyperbolic sampling algorithm with a composite movement set is used in the Monte Carlo simulation processes. We exploit this strategy to successfully fold 41/100 small proteins (36 approximately 120 residues) with predicted structures having a RMSD from native below 6.5 A in the top five cluster centroids. To fold larger-size proteins as well as to improve the folding yield of small proteins, we incorporate into the basic force field side-chain contact predictions from our threading program PROSPECTOR where homologous proteins were excluded from the data base. With these threading-based restraints, the program can fold 83/125 test proteins (36 approximately 174 residues) with structures having a RMSD to native below 6.5 A in the top five cluster centroids. This shows the significant improvement of folding by using predicted tertiary restraints, especially when the accuracy of side-chain contact prediction is >20%. For native fold selection, we introduce quantities dependent on the cluster density and the combination of energy and free energy, which show a higher discriminative power to select the native structure than the previously used cluster energy or cluster size, and which can be used in native structure identification in blind simulations. These procedures are readily automated and are being implemented on a genomic scale.  相似文献   

16.
It is known that potentially reactive groups of the protein molecule may be most efficiently nitros(yl)ated only when located within hydrophobic globules or built into the membrane. N1-nitrosotryptophan (NOW) is a stable product of nitrosation in vitro. However, the NOW fraction in proteins is small in ordinary proteins. It suggests the existence of unknown mechanisms preventing the accumulation of NOW. Here we show that these mechanisms are underlain by the protein structure. Analysis of protein structure databases to explore the atomic surroundings of tryptophan residues revealed preferential selection of certain surroundings. N(E) atoms of tryptophan residues, which are the targets for nitrosation, have usually polar and nucleophilic groups in their environment. Residues of Asp, Glu, Cys, His, and Met act as catalysts of denitrosation (internal denitrosilase). We found that short peptides with the same residues possessed denitrosilase activity even in solution. This selection might explain both the resistance of tryptophan residues in proteins to nitrosation and the mechanisms of chemical communication by means of reversible nitrosation of proteins.  相似文献   

17.
Kobayashi K  Sasaki T  Sato K  Kohno T 《Biochemistry》2000,39(48):14761-14767
We determined the three-dimensional structure of omega-conotoxin TxVII, a 26-residue peptide that is an L-type calcium channel blocker, by (1)H NMR in aqueous solution. Twenty converged structures of this peptide were obtained on the basis of 411 distance constraints obtained from nuclear Overhauser effect connectivities, 20 torsion angle constraints, and 21 constraints associated with hydrogen bonds and disulfide bonds. The root-mean-square deviations about the averaged coordinates of the backbone atoms (N, C(alpha), C, and O) and all heavy atoms were 0.50 +/- 0.09 A and 0.99 +/- 0.13 A, respectively. The structure of omega-conotoxin TxVII is composed of a triple-stranded antiparallel beta-sheet and four turns. The three disulfide bonds in omega-conotoxin TxVII form the classical cystine knot motif of toxic or inhibitory polypeptides. The overall folding of omega-conotoxin TxVII is similar to those of the N-type calcium channel blockers, omega-conotoxin GVIA and MVIIA, despite the low amino acid sequence homology among them. omega-Conotoxin TxVII exposes many hydrophobic residues to a certain surface area. In contrast, omega-conotoxin GVIA and MVIIA expose basic residues in the same way as omega-conotoxin TxVII. The channel binding site of omega-conotoxin TxVII is different from those of omega-conotoxin GVIA and MVIIA, although the overall folding of these three peptides is similar. The gathered hydrophobic residues of omega-conotoxin TxVII probably interact with the hydrophobic cluster of the alpha(1) subunit of the L-type calcium channel, which consists of 13 residues located in segments 5 and 6 in domain III and in segment 6 in domain IV.  相似文献   

18.
A new method is proposed for calculating aqueous solvation free energy based on atom-weighted solvent accessible surface areas. The method, SAWSA v2.0, gives the aqueous solvation free energy by summing the contributions of component atoms and a correction factor. We applied two different sets of atom typing rules and fitting processes for small organic molecules and proteins, respectively. For small organic molecules, the model classified the atoms in organic molecules into 65 basic types and additionally. For small organic molecules we proposed a correction factor of hydrophobic carbon to account for the aggregation of hydrocarbons and compounds with long hydrophobic aliphatic chains. The contributions for each atom type and correction factor were derived by multivariate regression analysis of 379 neutral molecules and 39 ions with known experimental aqueous solvation free energies. Based on the new atom typing rules, the correlation coefficient (r) for fitting the whole neutral organic molecules is 0.984, and the absolute mean error is 0.40 kcal mol–1, which is much better than those of the model proposed by Wang et al. and the SAWSA model previously proposed by us. Furthermore, the SAWSA v2.0 model was compared with the simple atom-additive model based on the number of atom types (NA). The calculated results show that for small organic molecules, the predictions from the SAWSA v2.0 model are slightly better than those from the atom-additive model based on NA. However, for macromolecules such as proteins, due to the connection between their molecular conformation and their molecular surface area, the atom-additive model based on the number of atom types has little predictive power. In order to investigate the predictive power of our model, a systematic comparison was performed on seven solvation models including SAWSA v2.0, GB/SA_1, GB/SA_2, PB/SA_1, PB/SA_2, AM1/SM5.2R and SM5.0R. The results showed that for organic molecules the SAWSA v2.0 model is better than the other six solvation models. For proteins, the model classified the atoms into 20 basic types and the predicted aqueous free energies of solvation by PB/SA were used for fitting. The solvation model based on the new parameters was employed to predict the solvation free energies of 38 proteins. The predicted values from our model were in good agreement with those from the PB/SA model and were much better than those given by the other four models developed for proteins.Figure The definition of hydrophobic carbons. Here CA, CB and CD are three carbon atoms; X represents a heteroatom. According to our definition, CB is a hydrophobic carbon, CA is not a hydrophobic carbon because a heteroatom is within four atoms and CD is not a hydrophobic carbon because CD is sp2- hydridized and in a six-member ring.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Detailed sequence analyses of the hydrophobic core residues of two long two-stranded alpha-helical coiled-coils that differ dramatically in sequence, function, and length were performed (tropomyosin of 284 residues and the coiled-coil domain of the myosin rod of 1086 residues). Three types of regions were present in the hydrophobic core of both proteins: stabilizing clusters and destabilizing clusters, defined as three or more consecutive core residues of either stabilizing (Leu, Ile, Val, Met, Phe, and Tyr) or destabilizing (Gly, Ala, Cys, Ser, Thr, Asn, Gln, Asp, Glu, His, Arg, Lys, and Trp) residues, and intervening regions that consist of both stabilizing and destabilizing residues in the hydrophobic core but no clusters. Subsequently, we designed a series of two-stranded coiled-coils to determine what defines a destabilizing cluster and varied the length of the destabilizing cluster from 3 to 7 residues to determine the length effect of the destabilizing cluster on protein stability. The results showed a dramatic destabilization, caused by a single Leu to Ala substitution, on formation of a 3-residue destabilizing cluster (DeltaT(m) of 17-21 degrees C) regardless of the stability of the coiled-coil. Any further substitution of Leu to Ala that increased the size of the destabilizing cluster to 5 or 7 hydrophobic core residues in length had little effect on stability (DeltaT(m) of 1.4-2.8 degrees C). These results suggested that the contribution of Leu to protein stability is context-dependent on whether the hydrophobe is in a stabilizing cluster or its proximity to neighboring destabilizing and stabilizing clusters.  相似文献   

20.
We have determined the high-resolution solution structure of the oxidized form of a chimeric human and Escherichia coli thioredoxin (TRX(HE)) by NMR. The overall structure is well-defined with a rms difference for the backbone atoms of 0.27 +/- 0.06 A. The topology of the protein is identical to those of the human and E. coli parent proteins, consisting of a central five-stranded beta-sheet surrounded by four alpha-helices. Analysis of the interfaces between the two domains derived from the human and E. coli sequences reveals that the general hydrophobic packing is unaltered and only subtle changes in the details of side chain interactions are observed. The packing of helix alpha(4) with helix alpha(2) across the hybrid interface is less optimal than in the parent molecules, and electrostatic interactions between polar side chains are missing. In particular, lysine-glutamate salt bridges between residues on helices alpha(2) and alpha(4), which were observed in both human and E. coli proteins, are not present in the chimeric protein. The origin of the known reduced thermodynamic stability of TRX(HE) was probed by mutagenesis on the basis of these structural findings. Two mutants of TRX(HE), S44D and S44E, were created, and their thermal and chemical stabilities were examined. Improved stability toward chaotropic agents was observed for both mutants, but no increase in the denaturation temperature was seen compared to that of TRX(HE). In addition to the structural analysis, the backbone dynamics of TRX(HE) were investigated by (15)N NMR relaxation measurements. Analysis using the model free approach reveals that the protein is fairly rigid with an average S(2) of 0.88. Increased mobility is primarily present in two external loop regions comprising residues 72-74 and 92-94 that contain glycine and proline residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号