首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, the predominant hypothesis explains cellular differentiation and behaviour as an essentially genetically driven intracellular process, suggesting a gene‐centrism paradigm. However, although many living species genetic has now been described, there is still a large gap between the genetic information interpretation and cell behaviour prediction. Indeed, the physical mechanisms underlying the cell differentiation and proliferation, which are now known or suspected to guide such as the flow of energy through cells and tissues, have been often overlooked. We thus here propose a complementary conceptual framework towards the development of an energy‐oriented classification of cell properties, that is, a mitochondria‐centrism hypothesis based on physical forces‐driven principles. A literature review on the physical–biological interactions in a number of various biological processes is analysed from the point of view of the fluid and solid mechanics, electricity and thermodynamics. There is consistent evidence that physical forces control cell proliferation and differentiation. We propose that physical forces interfere with the cell metabolism mostly at the level of the mitochondria, which in turn control gene expression. The present perspective points towards a paradigm shift complement in biology.  相似文献   

2.
Plant cells respond to short-term stress dehydration by modification of internal Ψπ such that an inward gradient of Ψω is maintained. In response to lowered Ψω, increases in internal Ψπ are created by alteration of cell inorganic ions and small organic solute content. Passive movement of water follows, changing cell hydration and forcing the plasma membrane against the elastic cell wall. The stretched cell wall presses against the cell contents, creating a hydrostatic pressure, Ψπ, which tends to force water out of the cell. The resulting hydrostatic pressure eventually comes into equilibrium with forces bringing water into the cell, largely Ψπ, and the net flow of water ceases.The mechanism for sensing cell Ψω changes is unknown but the initial event must be physical, not biochemical. The method of translation of such physical events into biochemical actions is also unknown but the Zimmermann model provides a means of signal transduction and amplification, through the alteration of membrane parameters, which could account for the observed changes. As for animal cells, cell levels of Ca2+ are important for their regulation of membrane Pj in these responses but unlike osmoregulation in higher animals, the involvement of plant hormones in these responses have not been clearly established. However, the important role of plant cell limiting membranes in plant cell osmoregulation responses seems obvious.  相似文献   

3.
Multicellular organisms comprise an organized array of individual cells surrounded by a meshwork of biomolecules and fluids. Cells have evolved various ways to communicate with each other, so that they can exchange information and thus fulfil their specified and unique functions. At the same time, cells are also physical entities that are subjected to a variety of local and global mechanical cues arising in the microenvironment. Cells are equipped with several different mechanisms to sense the physical properties of the microenvironment and the mechanical forces arising within it. These mechanical cues can elicit a variety of responses that have been shown to play a crucial role in vivo. In this review, we discuss the current views and understanding of cell mechanics and demonstrate the emerging evidence of the interplay between physiological mechanical cues and cell-cell communication pathways.  相似文献   

4.
When a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are unequal in size. Asymmetric spindle positioning is driven by regulated forces that can pull or push a spindle. The physical and molecular mechanisms that can position spindles asymmetrically have been studied in several systems, and some themes have begun to emerge from recent research. Recent work in budding yeast has presented a model for how cytoskeletal motors and cortical capture molecules can function in orienting and positioning a spindle. The temporal regulation of microtubule-based pulling forces that move a spindle has been examined in one animal system. Although the spindle positioning force generators have not been identified in most animal systems, the forces have been found to be regulated by both PAR polarity proteins and G-protein signaling pathways in more than one animal system.  相似文献   

5.
For a monolayer sheet to migrate cohesively, it has long been suspected that each constituent cell must exert physical forces not only upon its extracellular matrix but also upon neighboring cells. The first comprehensive maps of these distinct force components reveal an unexpected physical picture. Rather than showing smooth and systematic variation within the monolayer, the distribution of physical forces is dominated by heterogeneity, both in space and in time, which emerges spontaneously, propagates over great distances, and cooperates over the span of many cell bodies. To explain the severe ruggedness of this force landscape and its role in collective cell guidance, the well known mechanisms of chemotaxis, durotaxis, haptotaxis are clearly insufficient. In a broad range of epithelial and endothelial cell sheets, collective cell migration is governed instead by a newly discovered emergent mechanism of innately collective cell guidance - plithotaxis.  相似文献   

6.
Mechanical forces can regulate various functions in living cells. The cytoskeleton is a crucial element for the transduction of forces in cell-internal signals and subsequent biological responses. Accordingly, many studies in cellular biomechanics have been focused on the role of the contractile acto-myosin system in such processes. A widely used method to observe the dynamic actin network in living cells is the transgenic expression of fluorescent proteins fused to actin. However, adverse effects of GFP-actin fusion proteins on cell spreading, migration and cell adhesion strength have been reported. These shortcomings were shown to be partly overcome by fusions of actin binding peptides to fluorescent proteins. Nevertheless, it is not understood whether direct labeling by actin fusion proteins or indirect labeling via these chimaeras alters biomechanical responses of cells and the cytoskeleton to forces. We investigated the dynamic reorganization of actin stress fibers in cells under cyclic mechanical loading by transiently expressing either egfp-Lifeact or eyfp-actin in rat embryonic fibroblasts and observing them by means of live cell microscopy. Our results demonstrate that mechanically-induced actin stress fiber reorganization exhibits very different kinetics in EYFP-actin cells and EGFP-Lifeact cells, the latter showing a remarkable agreement with the reorganization kinetics of non-transfected cells under the same experimental conditions.  相似文献   

7.
Mechanical models for living cells--a review   总被引:1,自引:0,他引:1  
As physical entities, living cells possess structural and physical properties that enable them to withstand the physiological environment as well as mechanical stimuli occurring within and outside the body. Any deviation from these properties will not only undermine the physical integrity of the cells, but also their biological functions. As such, a quantitative study in single cell mechanics needs to be conducted. In this review, we will examine some mechanical models that have been developed to characterize mechanical responses of living cells when subjected to both transient and dynamic loads. The mechanical models include the cortical shell-liquid core (or liquid drop) models which are widely applied to suspended cells; the solid model which is generally used for adherent cells; the power-law structural damping model which is more suited for studying the dynamic behavior of adherent cells; and finally, the biphasic model which has been widely used to study musculoskeletal cell mechanics. Based upon these models, future attempts can be made to develop even more detailed and accurate mechanical models of living cells once these three factors are adequately addressed: structural heterogeneity, appropriate constitutive relations for each of the distinct subcellular regions and components, and active forces acting within the cell. More realistic mechanical models of living cells can further contribute towards the study of mechanotransduction in cells.  相似文献   

8.
Changes in the shape and structural organization of the cell nucleus occur during many fundamental processes including development, differentiation and aging. In many of these processes, the cell responds to physical forces by altering gene expression within the nucleus. How the nucleus itself senses and responds to such mechanical cues is not well understood. In addition to these external forces, epigenetic modifications of chromatin structure inside the nucleus could also alter its physical properties. To achieve a better understanding, we need to elucidate the relationship between nuclear structure and material properties. Recently, new approaches have been developed to systematically investigate nuclear mechanical properties. These experiments provide important new insights into the disease mechanism of a growing class of tissue-specific disorders termed 'nuclear envelopathies'. Here we review our current understanding of what determines the shape and mechanical properties of the cell nucleus.  相似文献   

9.
10.
Our traditional physical picture holds with the intuitive notion that each individual cell comprising the cellular collective senses signals or gradients and then mobilizes physical forces in response. Those forces, in turn, drive local cellular motions from which collective cellular migrations emerge. Although it does not account for spontaneous noisy fluctuations that can be quite large, the tacit assumption has been one of linear causality in which systematic local motions, on average, are the shadow of local forces, and these local forces are the shadow of the local signals. New lines of evidence now suggest a rather different physical picture in which dominant mechanical events may not be local, the cascade of mechanical causality may be not so linear, and, surprisingly, the fluctuations may not be noise as much as they are an essential feature of mechanism. Here we argue for a novel synthesis in which fluctuations and non-local cooperative events that typify the cellular collective might be illuminated by the unifying concept of cell jamming. Jamming has the potential to pull together diverse factors that are already known to contribute but previously had been considered for the most part as acting separately and independently. These include cellular crowding, intercellular force transmission, cadherin-dependent cell–cell adhesion, integrin-dependent cell–substrate adhesion, myosin-dependent motile force and contractility, actin-dependent deformability, proliferation, compression and stretch.  相似文献   

11.
Endothelial cells are simultaneously exposed to the mechanical forces of fluid wall shear stress (WSS) imposed by blood flow and solid circumferential stress (CS) induced by the blood vessel's elastic response to the pressure pulse. Experiments have demonstrated that these combined forces induce unique endothelial biomolecular responses that are not characteristic of either driving force alone and that the temporal phase angle between WSS and CS, referred to as the stress phase angle, modulates endothelial responses. In this article, we provide the first theoretical model to examine the combined forces of WSS and CS on a model of the endothelial cell plasma membrane. We focus on the strain energy density of the membrane that modulates the opening of ion channels that can mediate signal transduction. The model shows a significant influence of the stress phase angle on the strain energy density at the upstream and downstream ends of the cell where mechanotransduction is most likely to occur.  相似文献   

12.
Physical forces play an important role in modulating cell function and shaping tissue structure. Mechanotransduction, the process by which cells transduce physical force-induced signals into biochemical responses, is critical for mediating adaptations to mechanical loading in connective tissues. While much is known about mechanotransduction in cells involving forces delivered through extracellular matrix proteins and integrins, there is limited understanding of how mechanical signals are propagated through the interconnected cellular networks found in tissues and organs. We propose that intercellular mechanotransduction is a critical component for achieving coordinated remodeling responses to force application in connective tissues. We examine here recent evidence on different pathways of intercellular mechanotransduction and suggest a general model for how multicellular structures respond to mechanical loading as an integrated unit.  相似文献   

13.
The epithelial and non-epithelial cells of the intestinal wall experience a myriad of physical forces including strain, shear, and villous motility during normal gut function. Pathologic conditions alter these forces, leading to changes in the biology of these cells. The responses of intestinal epithelial cells to forces vary with both the applied force and the extracellular matrix proteins with which the cells interact, with differing effects on proliferation, differentiation, and motility, and the regulation of these effects involves similar but distinctly different signal transduction mechanisms. Although normal epithelial cells respond to mechanical forces, malignant gastrointestinal epithelial cells also respond to forces, most notably by increased cell adhesion, a critical step in tumor metastasis. This review will focus on the phenomenon of mechanical forces influencing cell biology and the mechanisms by which the gut responds these forces in both the normal as well as pathophysiologic states when forces are altered. Although more is known about epithelial responses to force, information regarding mechanosensitivity of vascular, neural, and endocrine cells within the gut wall will also be discussed, as will, the mechanism by which forces can regulate epithelial tumor cell adhesion.  相似文献   

14.
Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress.  相似文献   

15.
Vascular functions are regulated not only by chemical mediators, such as hormones, cytokines, and neurotransmitters, but by mechanical hemodynamic forces generated by blood flow and blood pressure. The mechanical force-mediated regulation is based on the ability of vascular cells, including endothelial cells and smooth muscle cells, to recognize fluid mechanical forces, i.e., the shear stress produced by flowing blood and the cyclic strain generated by blood pressure, and to transmit the signals into the cell interior, where they trigger cell responses that involve changes in cell morphology, cell function, and gene expression. Recent studies have revealed that immature cells, such as endothelial progenitor cells (EPCs) and embryonic stem (ES) cells, as well as adult vascular cells, respond to fluid mechanical forces. Shear stress and cyclic strain promote the proliferation and differentiation of EPCs and ES cells into vascular cells and enhance their ability to form new vessels. Even more recently, attempts have been made to apply fluid mechanical forces to EPCs and ES cells cultured on polymer tubes and develop tissue-engineered blood vessel grafts that have a structure and function similar to that of blood vessels in vivo. This review summarizes the current state of knowledge concerning the mechanobiological responses of stem/progenitor cells and its potential applications to tissue engineering.  相似文献   

16.
Blood cells are subjected to various mechanical forces; including pressure, flow, shear force, gravity, and forces acting against them with varying stiffness (eg. blood vessel wall). Scientists have discovered that these forces have profound effects on cellular growth, differentiation, secretion of cytokines, cell death, and migration. These processes are called mechanotransduction, a conversion of mechanical forces to biochemical signals. In this article the author reviews biophysical forces that affect biological functions of blood cells and their responses in normal physiology and pathophysiology. Although input (forces) and output (cellular responses) have been well studied by utilizing recently developed various force-generating devices, the molecular mechanism of mechanotransudction is still a mystery. This is because reconstructing molecular interaction in the presence of mechanical forces in vitro is highly challenging and until now the molecular dynamics involved in structural changes caused by these forces are largely unknown. Nevertheless, the author has reviewed a few examples of potential structural effects on the molecular mechanism of mechanotransduction.  相似文献   

17.
Cell mechanics and mechanotransduction: pathways, probes, and physiology   总被引:10,自引:0,他引:10  
Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces. cytoskeleton; micromanipulation; cell signaling  相似文献   

18.
Cytokinesis is the final stage of cell division in which the daughter cells separate. Although a growing body of evidence suggests that cell migration-induced traction forces may be required to provide physical assistance for daughter cells to dissociate during abscission, the role of cell migration in cytokinesis has not been directly elucidated. Recently, we have demonstrated that Crk and paxillin, which are pivotal components of the cell migration machinery, localize to the midbody and are essential for the abscission. These findings provided an important link between the cell migration and cytokinesis machineries and prompted us to dissect the role of cell migration in cytokinesis. We show that cell migration controls the kinetics of cleavage furrowing, midbody extension and abscission and coordinates proper subcellular redistribution of Crk and syntaxin-2 to the midbody after ingression.Key words: cell migration, cytokinesis, midbody, abscission, cleavage furrow, Crk, paxillin, syntaxin-2, ExoT  相似文献   

19.
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.  相似文献   

20.
From a mechanical point of view, plant and hyphal cells are more complex than their animal counterparts because the variety of structural components determining cellular architecture is broader. In addition to cytoskeletal elements and the plasma membrane, the cell wall and turgor pressure equip plant and hyphal cells with structures analogous to an exoskeleton and a hydroskeleton, respectively. To quantify the physical properties of plant and hyphal cells, researchers have developed a plethora of experimental methods. This review provides an overview of experimental approaches that have been used to measure turgor pressure and to determine the mechanical properties of the plant cell wall at the subcellular level. It is completed by a glimpse into the arsenal of techniques that has been used to characterize the physical properties of cytoskeletal elements. These have mostly been used on animal cells, but we hope they will find their way into plant cell research. Finally, assays and tests to measure the generation of forces by cells and subcellular structures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号