共查询到20条相似文献,搜索用时 15 毫秒
1.
Although many cell functions are regulated by Ca(2+) oscillations induced by a cyclic release of Ca(2+) from intracellular Ca(2+) stores, the pacemaker mechanism of Ca(2+) oscillations remains to be explained. Using green fluorescent protein-based Ca(2+) indicators that are targeted to intracellular Ca(2+) stores, the endoplasmic reticulum (ER) and mitochondria, we found that Ca(2+) shuttles between the ER and mitochondria in phase with Ca(2+) oscillations. Following agonist stimulation, Ca(2+) release from the ER generated the first Ca(2+) oscillation and loaded mitochondria with Ca(2+). Before the second Ca(2+) oscillation, Ca(2+) release from the mitochondria by means of the Na(+)/Ca(2+) exchanger caused a gradual increase in cytoplasmic Ca(2+) concentration, inducing a regenerative ER Ca(2+) release, which generated the peak of Ca(2+) oscillation and partially reloaded the mitochondria. This sequence of events was repeated until mitochondrial Ca(2+) was depleted. Thus, Ca(2+) shuttling between the ER and mitochondria may have a pacemaker role in the generation of Ca(2+) oscillations. 相似文献
2.
Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum 总被引:1,自引:0,他引:1
We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca(2+) release from the endoplasmic reticulum (ER) (i) in powering mitochondrial Ca(2+) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)). For this purpose, we expressed in HeLa cells aequorin-based Ca(2+)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H(1) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca(2+)](c) rise and drop in ER luminal [Ca(2+)] ([Ca(2+)](er)), and then the ER refilled with [Ca(2+)](c) at resting values. With histamine, [Ca(2+)](c) after the initial peak stabilized at a sustained plateau, and [Ca(2+)](er) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca(2+) response than glutamate ( approximately 15 versus approximately 65 microm). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca(2+)](c) plateau and the sustained ER Ca(2+) release and markedly increased the mitochondrial Ca(2+) response. Conversely, mitochondrial Ca(2+) uptake evoked by histamine was drastically reduced by very transient ( approximately 2-s) agonist applications. These data indicate that efficient mitochondrial Ca(2+) uptake depends on the preservation of high Ca(2+) microdomains at the mouth of ER Ca(2+) release sites close to mitochondria. This in turn depends on continuous Ca(2+) release balanced by Ca(2+) reuptake into the ER and maintained by Ca(2+) influx from the extracellular space. 相似文献
3.
The possible effects of calmodulin and cyclic AMP on active Ca2+ uptake by the islet-cell endoplasmic reticulum were investigated. Neither calmodulin nor cyclic AMP affected the rate of active Ca2+ uptake, or the steady-state filling capacity of the endoplasmic reticulum when measured in the absence of oxalate. Consistent with these results, calmodulin did not activate the Ca2+-stimulated ATPase activity associated with this cell fraction. During the course of these experiments., it was unexpectedly discovered that the rate of Ca2+ uptake, as well as the steady-state Ca2+ filling capacity of the endoplasmic reticulum, were markedly increased by unidentified factor(s) in the cytosol. This effect could be demonstrated by reconstitution of the membranes in cytosol, or by direct addition of fresh or dialysed cytosol to the Ca2+ uptake assays. The degree of activation by the cytosol indicates that the endoplasmic reticulum may play a prominent role in controlling beta-cell Ca2+ concentrations and that the unidentified activator(s) present in the cytosol may be involved in regulation of this function. 相似文献
4.
Measuring [Ca2+] in the endoplasmic reticulum with aequorin 总被引:1,自引:0,他引:1
The photoprotein aequorin was the first probe used to measure specifically the [Ca(2+)] inside the lumen of the endoplasmic reticulum ([Ca(2+)](ER)) of intact cells and it provides values for the steady-state [Ca(2+)](ER), around 500 microM, that closely match those obtained now by other procedures. Aequorin-based methods to measure [Ca(2+)](ER) offer several advantages: (i) targeting of the probe is extremely precise; (ii) the use of low Ca(2+)-affinity aequorin allows covering a large dynamic range of [Ca(2+)], from 10(-5) to 10(-3)M; (iii) aequorin is nearly insensitive to changes in Mg(2+) or pH, has a high signal-to-noise ratio and calibration of the results in [Ca(2+)] is made straightforward using a simple algorithm; and (iv) the equipment required for luminescence measurements in cell populations is simple and low-cost. On the negative side, this technique has also some disadvantages: (i) the relatively low amount of emitted light makes difficult performing single-cell imaging studies; (ii) reconstitution of aequorin with coelenterazine requires previous complete depletion of Ca(2+) of the ER for 1-2h, a maneuver that may result in deleterious effects in some cells; (iii) because of the high rate of aequorin consumption at steady-state [Ca(2+)](ER), only relatively brief experiments can be performed; and (iv) expression of ER-targeted aequorin requires previous transfection or infection to introduce the appropriate DNA construct, or alternatively the use of stable cell clones. Choosing aequorin or other techniques to measure [Ca(2+)](ER) will depend of the correct balance between these properties in a particular problem. 相似文献
5.
Smaili SS Stellato KA Burnett P Thomas AP Gaspers LD 《The Journal of biological chemistry》2001,276(26):23329-23340
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways. 相似文献
6.
A unique subfamily of calmodulin-dependent Ca2+-ATPases was recently identified in plants. In contrast to the most closely related pumps in animals, plasma membrane-type Ca2+-ATPases, members of this new subfamily are distinguished by a calmodulin-regulated autoinhibitor located at the N-terminal instead of a C-terminal end. In addition, at least some isoforms appear to reside in non-plasma membrane locations. To begin delineating their functions, we investigated the subcellular localization of isoform ACA2p (Arabidopsis Ca2+-ATPase, isoform 2 protein) in Arabidopsis. Here we provide evidence that ACA2p resides in the endoplasmic reticulum (ER). In buoyant density sucrose gradients performed with and without Mg2+, ACA2p cofractionated with an ER membrane marker and a typical "ER-type" Ca2+-ATPase, ACA3p/ECA1p. To visualize its subcellular localization, ACA2p was tagged with a green fluorescence protein at its C terminus (ACA2-GFPp) and expressed in transgenic Arabidopsis. We collected fluorescence images from live root cells using confocal and computational optical-sectioning microscopy. ACA2-GFPp appeared as a fluorescent reticulum, consistent with an ER location. In addition, we observed strong fluorescence around the nuclei of mature epidermal cells, which is consistent with the hypothesis that ACA2p may also function in the nuclear envelope. An ER location makes ACA2p distinct from all other calmodulin-regulated pumps identified in plants or animals. 相似文献
7.
Recent data have revealed an unexpected role of Bcl-2 in modulating the steady-state levels and agonist-dependent fluxes of Ca(2+) ions. Direct monitoring of endoplasmic reticulum (ER) Ca(2+) concentration with recombinant probes reveals a lower state of filling in Bcl-2-overexpressing cells and a higher leak rate from the organelle. The broader set of indirect data using cytosolic probes reveals a more complex scenario, as in many cases no difference was detected in the Ca(2+) content of the intracellular pools. At the same time, Ca(2+) signals have been shown to affect important checkpoints of the apoptotic process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the data on the effect of Bcl-2 on [Ca(2+)](er), (ii) the functional significance of the Ca(2+)-signalling alteration and (iii) the current insight into the possible mechanisms of this effect. 相似文献
8.
Missiaen L Van Acker K Parys JB De Smedt H Van Baelen K Weidema AF Vanoevelen J Raeymaekers L Renders J Callewaert G Rizzuto R Wuytack F 《The Journal of biological chemistry》2001,276(42):39161-39170
Cytosolic Ca(2+) oscillations can be due to cycles of release and re-uptake of internally stored Ca(2+). To investigate the nature of these Ca(2+) stores, we expressed the Pmr1 Ca(2+) pump of Caenorhabditis elegans in COS-1 cells and pretreated the cells with thapsigargin to prevent Ca(2+) uptake by the sarco(endo)plasmic reticulum Ca(2+)-ATPase. Pmr1 co-localized with the Golgi-specific 58K protein and was targeted to a Ca(2+) store that was less leaky for Ca(2+) than the endoplasmic reticulum and whose inositol trisphosphate receptors were less sensitive to inositol trisphosphate and ATP than those in the endoplasmic reticulum. ATP-stimulated Pmr1-overexpressing cells responded after a latency to extracellular Ca(2+) with a regenerative Ca(2+) signal, which could be prevented by caffeine. They also produced very stable ilimaquinone-sensitive baseline Ca(2+) spikes, even in the presence of thapsigargin. Such responses never occurred in non-transfected cells or in cells that overexpressed the type-1 sarco(endo)plasmic reticulum Ca(2+)-ATPase. Abortive Ca(2+) spikes also occurred in histamine-stimulated untransfected HeLa cells pretreated with thapsigargin, and they too were inhibited by ilimaquinone. We conclude that the Pmr1-induced Ca(2+) store, which probably corresponds to the Golgi compartment, can play a crucial role in setting up baseline Ca(2+) spiking. 相似文献
9.
K M Chan D M Delfert S L Koepnick J M McDonald 《Archives of biochemistry and biophysics》1987,256(2):472-479
In an initial attempt to use calmodulin antagonists as probes to study the role of calmodulin in the modulation of Ca2+ uptake activity in the endoplasmic reticulum of rat liver, we noticed that W7 had a differential effect on the Ca2+ uptake and Ca2+-ATPase activities. To test the specificity of this effect and explore the underlying mechanism, we examined the effects of W7 on Ca2+ accumulation and release by endoplasmic reticulum in both permeabilized hepatocytes and a subcellular membrane fraction (microsomes) enriched in endoplasmic reticulum. W7 reduced the steady-state Ca2+ accumulation in both preparations in a dose-dependent fashion but the half-maximal inhibitory concentrations were different for Ca2+ accumulation (90 microM) and Ca2+-ATPase activity (500 microM). Kinetic analysis indicated that the inhibition of both Ca2+ uptake and Ca2+-ATPase activity by W7 was noncompetitive with respect to Ca2+ and ATP. Addition of W7 did not enhance the rate of Ca2+ efflux from microsomes after Ca2+ influx had been terminated. The effect of W7 was apparently not related to its calmodulin antagonist properties as the phenomenon could not be demonstrated with the other more specific calmodulin antagonists, calmidazolium or compound 48/80. A similar observation with W7 has also been reported with the endoplasmic reticulum of pancreatic islets (B. A. Wolf, J. R. Colca, and M. L. McDaniel (1986) Biochem. Biophys. Res. Commun. 141, 418-425). We concluded that the effects of W7 on microsomal Ca2+ handling were not the result of increased membrane permeability to Ca2+ but rather were due to dissociation of Ca2+ uptake from Ca2+-ATPase activity. 相似文献
10.
P Gilon A Arredouani P Gailly J Gromada J C Henquin 《The Journal of biological chemistry》1999,274(29):20197-20205
The role of intracellular Ca2+ pools in oscillations of the cytosolic Ca2+ concentration ([Ca2+]c) triggered by Ca2+ influx was investigated in mouse pancreatic B-cells. [Ca2+]c oscillations occurring spontaneously during glucose stimulation or repetitively induced by pulses of high K+ (in the presence of diazoxide) were characterized by a descending phase in two components. A rapid decrease in [Ca2+]c coincided with closure of voltage-dependent Ca2+ channels and was followed by a slower phase independent of Ca2+ influx. Blocking the SERCA pump with thapsigargin or cyclopiazonic acid accelerated the rising phase of [Ca2+]c oscillations and increased their amplitude, which suggests that the endoplasmic reticulum (ER) rapidly takes up Ca2+. It also suppressed the slow [Ca2+]c recovery phase, which indicates that this phase corresponds to the slow release of Ca2+ that was taken up by the ER during the upstroke of the [Ca2+]c transient. Glucose promoted the buffering capacity of the ER and amplified the slow [Ca2+]c recovery phase. The slow phase induced by high K+ pulses was not affected by modulators of Ca2+- or inositol 1,4,5-trisphosphate-induced Ca2+ release, did not involve a depolarization-induced Ca2+ release, and was also observed at the end of a rapid rise in [Ca2+]c triggered from caged Ca2+. It is attributed to passive leakage of Ca2+ from the ER. We suggest that the ER displays oscillations of the Ca2+ concentration ([Ca2+]ER) concomitant and parallel to [Ca2+]c. The observation that thapsigargin depolarizes the membrane of B-cells supports the proposal that the degree of Ca2+ filling of the ER modulates the membrane potential. Therefore, [Ca2+]ER oscillations occurring during glucose stimulation are likely to influence the bursting behavior of B-cells and eventually [Ca2+]c oscillations. 相似文献
11.
Activation of the endoplasmic reticulum Ca2+ pump of pancreatic acini by Ca2+ mobilizing hormones 总被引:1,自引:0,他引:1
S Muallem T G Beeker C J Fimmel 《Biochemical and biophysical research communications》1987,149(1):213-220
Stimulation of the pancreatic acinar cells with Ca2+ mobilizing hormones increased the ATP-dependent Ca2+ uptake into the ER of permeabilized cells. Activation of the ER Ca2+ pump resulted in increased apparent affinity for Ca2+ from 0.26 to 0.09 uM and Vmax from 2.68 to 5.74 nmoles/mg prot./min. The apparent affinity of the pump for VO4 = was dependent on [Ca2+]. Activation of the pump also decreased apparent affinity for VO4 = from 12 to 32 uM at [Ca2+] of 0.138 uM. These findings suggest that pump activation is due to acceleration of the rate of the conformational transition between the VO4 = (E2) and Ca2+ (E1) sensitive forms of the pump. 相似文献
12.
Gelebart P Opas M Michalak M 《The international journal of biochemistry & cell biology》2005,37(2):260-266
Calreticulin is a 46-kDa Ca2+-binding chaperone found across a diverse range of species. The protein is involved in the regulation of intracellular Ca2+ homeostasis and endoplasmic reticulum (ER) Ca2+ storage capacity. Calreticulin is also an important molecular chaperone involved in "quality control" within secretory pathways. The protein contains structurally and functionally unique domains with specialized functions. Studies on calreticulin knockout mice indicate that the protein is essential in early cardiac development. The protein also plays an important role in autoimmunity and cancer. 相似文献
13.
The positioning and dynamics of organelles depend on membrane-cytoskeleton interactions. Mitochondria relocate along microtubules (MT), but it is not clear whether MT have direct effects on mitochondrial function. Using two-photon microscopy and the mitochondrial fluorescent dyes rhodamine 123 and Rhod-2, we showed that Taxol and nocodazole, which correspondingly stabilize and disrupt MT, decreased potential and Ca(2+) in the mitochondria of brain stem pre-Botzinger complex neurons. Without changing basal cytoplasmic Ca(2+) ([Ca(2+)](i)), Taxol promoted the generation of [Ca(2+)](i) spikes in dendrites. These spikes were abolished after blockade of Ca(2+) influx and after depletion of internal Ca(2+) stores, indicating the involvement of Ca(2+)-induced Ca(2+) release. Nocodazole decreased mitochondrial potential and [Ca(2+)](m) and produced a long lasting increase in [Ca(2+)](i). MT-acting drugs depolarized single immobilized mitochondria and released previously stored Ca(2+). All of these effects were inhibited by pretreatment with blockers of mitochondrial permeability transition pore (mPTP), cyclosporin A, and 2-aminoethoxydiphenyl borate. Induction of mPTP by Taxol and nocodazole was confirmed by using a calcein/Co(2+) imaging technique. Electron and optical microscopy revealed tubulin bound to mitochondria. Mitochondria, MT, and endoplasmic reticulum (ER) showed strong co-localization, the degree of which decreased after MT were disrupted. We propose that changes in the structure of MT by Taxol and nocodazole promote the induction of mPTP. Subsequent Ca(2+) efflux stimulates the Ca(2+) release from the ER that drives spontaneous [Ca(2+)](i) transients. Thus, close positioning of mitochondria to the ER as determined by MT can be essential for the local [Ca](i) signaling in neurons. 相似文献
14.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles 总被引:3,自引:0,他引:3
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively. 相似文献
15.
The endoplasmic reticulum (ER) plays a vital role in many cellular processes, including Ca2+ storage and release. Calreticulin is a Ca2+-binding chaperon residing in ER. The protein is a key component of the quality control pathways in ER. In the ER lumen, calreticulin performs two major functions, works as a chaperon and regulates Ca2+ homeostasis. In cardiac muscle, calreticulin plays an important role in cardiac development and pathology. 相似文献
16.
Corbett EF Oikawa K Francois P Tessier DC Kay C Bergeron JJ Thomas DY Krause KH Michalak M 《The Journal of biological chemistry》1999,274(10):6203-6211
Casade Blue (CB), a fluorescent dye, was used to investigate the dynamics of interactions between endoplasmic reticulum (ER) lumenal chaperones including calreticulin, protein disulfide isomerase (PDI), and ERp57. PDI and ERp57 were labeled with CB, and subsequently, we show that the fluorescence intensity of the CB-conjugated proteins changes upon exposure to microenvironments of a different polarity. CD analysis of the purified proteins revealed that changes in the fluorescence intensity of CB-ERp57 and CB-PDI correspond to conformational changes in the proteins. Using this technique we demonstrate that PDI interacts with calreticulin at low Ca2+ concentration (below 100 microM), whereas the protein complex dissociates at >400 microM Ca2+. These are the Ca2+ concentrations reminiscent of Ca2+ levels found in empty or full ER Ca2+ stores. The N-domain of calreticulin interacts with PDI, but Ca2+ binding to the C-domain of the protein is responsible for Ca2+ sensitivity of the interaction. ERp57 also interacts with calreticulin through the N-domain of the protein. Initial interaction between these proteins is Ca2+-independent, but it is modulated by Ca2+ binding to the C-domain of calreticulin. We conclude that changes in ER lumenal Ca2+ concentration may be responsible for the regulation of protein-protein interactions. Calreticulin may play a role of Ca2+ "sensor" for ER chaperones via regulation of Ca2+-dependent formation and maintenance of structural and functional complexes between different proteins involved in a variety of steps during protein synthesis, folding, and post-translational modification. 相似文献
17.
Gilchrist James S.C. Palahniuk Chris Bose Ratna 《Molecular and cellular biochemistry》1997,172(1-2):159-170
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo. 相似文献
18.
Release of Ca2+ from the endoplasmic reticulum contributes to Ca2+ signaling in Dictyostelium discoideum
下载免费PDF全文

Wilczynska Z Happle K Müller-Taubenberger A Schlatterer C Malchow D Fisher PR 《Eukaryotic cell》2005,4(9):1513-1525
Ca2+ responses to two chemoattractants, folate and cyclic AMP (cAMP), were assayed in Dictyostelium D. discoideum mutants deficient in one or both of two abundant Ca2+-binding proteins of the endoplasmic reticulum (ER), calreticulin and calnexin. Mutants deficient in either or both proteins exhibited enhanced cytosolic Ca2+ responses to both attractants. Not only were the mutant responses greater in amplitude, but they also exhibited earlier onsets, faster rise rates, earlier peaks, and faster fall rates. Correlations among these kinetic parameters and the response amplitudes suggested that key events in the Ca2+ response are autoregulated by the magnitude of the response itself, i.e., by cytosolic Ca2+ levels. This autoregulation was sufficient to explain the altered kinetics of the mutant responses: larger responses are faster in both mutant and wild-type cells in response to both folate (vegetative cells) and cAMP (differentiated cells). Searches of the predicted D. discoideum proteome revealed three putative Ca2+ pumps and four putative Ca2+ channels. All but one contained sequence motifs for Ca2+- or calmodulin-binding sites, consistent with Ca2+ signals being autoregulatory. Although cytosolic Ca2+ responses in the calnexin and calreticulin mutants are enhanced, the influx of Ca2+ from the extracellular medium into the mutant cells was smaller. Compared to wild-type cells, Ca2+ release from the ER in the mutants thus contributes more to the total cytosolic Ca2+ response while influx from the extracellular medium contributes less. These results provide the first molecular genetic evidence that release of Ca2+ from the ER contributes to cytosolic Ca2+ responses in D. discoideum. 相似文献
19.
Lemmens R Larsson O Berggren PO Islam MS 《The Journal of biological chemistry》2001,276(13):9971-9977
Stimulus-secretion coupling in pancreatic beta-cells involves membrane depolarization and Ca(2+) entry through voltage-gated L-type Ca(2+) channels, which is one determinant of increases in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). We investigated how the endoplasmic reticulum (ER)-associated Ca(2+) apparatus further modifies this Ca(2+) signal. When fura-2-loaded mouse beta-cells were depolarized by KCl in the presence of 3 mm glucose, [Ca(2+)](i) increased to a peak in two phases. The second phase of the [Ca(2+)](i) increase was abolished when ER Ca(2+) stores were depleted by thapsigargin. The steady-state [Ca(2+)](i) measured at 300 s of depolarization was higher in control cells compared with cells in which the ER Ca(2+) pools were depleted. The amount of Ca(2+) presented to the cytoplasm during depolarization as estimated from the integral of the increment in [Ca(2+)](i) over time (integralDelta[Ca(2+)](i).dt) was approximately 30% higher compared with that in the Ca(2+) pool-depleted cells. neo-thapsigargin, an inactive analog, did not affect [Ca(2+)](i) response. Using Sr(2+) in the extracellular medium and exploiting the differences in the fluorescence properties of Ca(2+)- and Sr(2+)-bound fluo-3, we found that the incoming Sr(2+) triggered Ca(2+) release from the ER. Depolarization-induced [Ca(2+)](i) response was not altered by, an inhibitor of phosphatidylinositol-specific phospholipase C, suggesting that stimulation of the enzyme by Ca(2+) is not essential for amplification of Ca(2+) signaling. [Ca(2+)](i) response was enhanced when cells were depolarized in the presence of 3 mm glucose, forskolin, and caffeine, suggesting involvement of ryanodine receptors in the amplification process. Pretreatment with ryanodine (100 microm) diminished the second phase of the depolarization-induced increase in [Ca(2+)](i). We conclude that Ca(2+) entry through L-type voltage-gated Ca(2+) channels triggers Ca(2+) release from the ER and that such a process amplifies depolarization-induced Ca(2+) signaling in beta-cells. 相似文献
20.
Pelled D Lloyd-Evans E Riebeling C Jeyakumar M Platt FM Futerman AH 《The Journal of biological chemistry》2003,278(32):29496-29501