首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge translocation by Na(+),K(+)-ATPase was investigated by adsorbing membrane fragments containing Na(+),K(+)-ATPase from pig kidney on a solid supported membrane (SSM). Upon adsorption, the ion pumps were activated by performing ATP concentration jumps at the surface of the SSM, and the capacitive current transients generated by Na(+),K(+)-ATPase were measured under potentiostatic conditions. To study the behavior of the ion pump under multiple turnover conditions, ATP concentration jump experiments were carried out in the presence of Na(+) and K(+) ions. Current transients induced by ATP concentration jumps were also recorded in the presence of the enzyme alpha-chymotrypsin. The effect of acylphosphatase (AcP), a cytosolic enzyme that may affect the functioning of Na(+),K(+)-ATPase by hydrolyzing its acylphosphorylated intermediate, was investigated by performing ATP concentration jumps both in the presence and in the absence of AcP. In the presence of Na(+) but not of K(+), the addition of AcP causes the charge translocated as a consequence of ATP concentration jumps to decrease by about 50% over the pH range from 6 to 7, and to increase by about 20% at pH 8. Conversely, no appreciable effect of pH upon the translocated charge is observed in the absence of AcP. The above behavior suggests that protons are involved in the AcP-catalyzed dephosphorylation of the acylphosphorylated intermediate of Na(+),K(+)-ATPase.  相似文献   

2.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

3.
Na(+)/K(+)-ATPase (NKA) exports 3Na(+) and imports 2K(+) at the expense of the hydrolysis of 1ATP under physiological conditions. In the absence of K(+), it can mediate electroneutral Na(+)/Na(+) exchange. In the electroneutral Na(+)/Na(+) exchange mode, NKA produces a transient current containing fast, medium and slow components in response to a sudden voltage step. These three components of the transient current demonstrate the sequential release of Na(+) ions from three binding sites. Our data from oocytes provide further experimental support for the existence of these components. Oligomycin is an NKA inhibitor that favors the 2Na(+)-occluded state without affecting the conformational state of the NKA. We studied the effects of oligomycin on both K(+)-activated currents and transient currents in wild-type Bufo NKA and a mutant form of Bufo NKA, NKA: G813A. Oligomycin blocked almost all of the K(+)-activated current, although the three components of the transient current showed different sensitivities to oligomycin. The oligomycin-inhibited charge movement measured using a P/4 protocol had a rate coefficient similar to the medium transient component. The fast component of the transient current elicited by a short voltage step also showed sensitivity to oligomycin. However, the slow component was not totally inhibited by oligomycin. Our results indicate that the second and third sodium ions might be released to the extracellular medium by a mechanism that is not shared by the first sodium ion.  相似文献   

4.
Currents generated by the endogenous Na+/K+ pump in the oocytes of Xenopus laevis were determined under voltage-clamp as currents activated by different K+ congeners. The voltage dependence of the pump current reflects voltage-dependent steps in the reaction cycle. The decrease of K(+)-activated pump current at positive potentials has been attributed to voltage-dependent stimulation by the external K+ (Rakowski, Vasilets, LaTona and Schwarz (1991) J. Membr. Biol. 121, 177-187). In Na(+)-free solution, activation of the pump by external cations seems to be the dominating voltage-dependent and rate-determining step in the reaction cycle. Under these conditions, the voltage dependence of apparent Km values for pump activation can be analyzed. The dependence suggests voltage-dependent binding of extracellular cations assuming that an effective charge of about 0.4 of an elementary charge is moved in the electrical field during a step associated with the cation binding. The apparent Km values at 0 mV differ for various cations that stimulate pump activity. The values are in mM: 0.10 for Tl+, 0.63 for K+, 0.71 for Rb+, 9.3 for NH4+, and 12.9 for Cs+. The corresponding apparent affinities follow the same sequence as the cation permeability of the K(+)-selective delayed rectifier channel of nerve cells. The results are compatible with the interpretation that the cations have to pass an ion-selective access channel to reach their binding sites in the pump molecule.  相似文献   

5.
A series of six different mutants (D804A, D804E, D804G, D804N, D804Q, and D804S) of aspartate 804 present in transmembrane segment 6 of the rat Na(+),K(+)-ATPase alpha(1)-subunit were prepared and expressed in Sf9 cells by use of the baculovirus expression system. In contrast to the wild-type enzyme all mutants except D804Q showed a very high Na(+)-ATPase activity, which was hardly further stimulated by the addition of K(+). The ATPase activity of the mutants was already nearly maximal at 10 microM ATP and most of them could be phosphorylated in the absence of Na(+) at pH 6.0 and 21 degrees C, suggesting that they strongly prefer the E(1) over the E(2) conformation. However, Na(+) dose-dependently lowered the steady-state phosphorylation level, as a consequence of the increased affinity for Na(+) in the dephosphorylation reaction of the mutants compared to the wild-type enzyme. Conversely, the affinity for K(+) in the dephosphorylation reaction was decreased for the mutants as compared to that for the wild-type enzyme. When the pH was increased or the temperature was decreased, the phosphorylation level of the mutants decreased and the Na(+) activation in the phosphorylation reaction became apparent. It is concluded that upon mutation of aspartate 804 the affinity of the cation-binding pocket is changed relatively in favor of Na(+) instead of K(+), as a consequence of which the enzyme has obtained a preference for the E(1) conformation.  相似文献   

6.
The aim of this study was to investigate whether or not the activity of the cardiac Na(+)-Ca(2+) exchanger might be directly sensitive to external K(+) concentration ([K(+)](e)). Measurements of whole-cell exchanger current (I(NaCa)) were made at 37 degrees C from guinea-pig isolated ventricular myocytes, using whole-cell patch clamp recording with major interfering conductances blocked. Changing [K(+)](e) from 0 to 5mM significantly reduced both outward and inward exchange currents in a time-dependent manner. Various [K(+)](e) between 1 and 15 mM were tested and the inhibitory effect was observed to be concentration-dependent. At steady-state, 5mM [K(+)](e) decreased the density of Ni(2+)-sensitive current by 52.8+/-4.3% (mean+/-S.E.M., n=6) and of 0Na0Ca-sensitive current by 39.0+/-4.4% (n=5). The possibility that the inhibitory effect of external K(+) on I(NaCa) might wholly or in part be secondary to activation of the sarcolemmal Na(+)-K(+) pump was investigated by testing the effect of K(+) addition in the presence of a high concentration of strophanthidin (500 microM). Ni(2+)-sensitive I(NaCa) was still observed to be sensitive to external K(+) (I(NaCa) decreased by 39.4+/-9.4%, n=4), suggesting that the inhibitory effect could occur independently of activation of the Na(+)-K(+) pump. The effect of external K(+) on I(NaCa) was verified using a baby hamster kidney (BHK) cell line stably expressing the cardiac Na(+)-Ca(2+) exchanger isoform, NCX1. Similar to native I(NaCa), NCX1 current was also suppressed by [K(+)](e). However, [K(+)](e) did not alter current amplitude in untransfected BHK cells. The effect of [K(+)](e) on I(NaCa) could not be attributed to simply adding any monovalent cation back to the external solution, since it was not reproduced by application of equimolar Li(+), Cs(+) and TEA(+). Rb(+), however, could mimic the effect of K(+). Collectively, these data suggest that external K(+) at physiologically and pathologically relevant concentrations might be able to modulate directly the activity of the cardiac Na(+)-Ca(2+) exchanger.  相似文献   

7.
The inotropic and toxic effects of cardiac steroids are thought to result from Na(+)-K(+)-ATPase inhibition, with elevated intracellular Na(+)(Na)causing increased intracellular Ca(2+)(Ca) via Na-Ca exchange. We studied the effects of ouabain on cat ventricular myocytes in Na(+)-free conditions where the exchanger is inhibited. Cell shortening and Ca transients (with fluo 4-AM fluorescence) were measured under voltage clamp during exposure to Na(+)-free solutions [LiCl or N-methyl-D-glucamine (NMDG) replacement]. Ouabain enhanced contractility by 121 +/- 55% at 1 micromol/l (n = 11) and 476 +/- 159% at 3 micromol/l (n = 8) (means +/- SE). Ca transient amplitude was also increased. The inotropic effects of ouabain were retained even after pretreatment with saxitoxin (5 micromol/l) or changing the holding potential to -40 mV (to inactivate Na(+) current). Similar results were obtained with both Li(+) and NMDG replacement and in the absence of external K(+), indicating that ouabain produced positive inotropy in the absence of functional Na-Ca exchange and Na(+)-K(+)-ATPase activity. In contrast, ouabain had no inotropic response in rat ventricular myocytes (10-100 micromol/l). Finally, ouabain reversibly increased Ca(2+) overload toxicity by accelerating the rate of spontaneous aftercontractions (n = 13). These results suggest that the cellular effects of ouabain on the heart may include actions independent of Na(+)-K(+)-ATPase inhibition, Na-Ca exchange, and changes in Na.  相似文献   

8.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

9.
The enzyme Na(+), K(+)-ATPase was investigated in the gills of selected hyper-regulating gammarid amphipods. Gill Na(+), K(+)-ATPase was characterised with respect to the main cation and co-factor concentrations for the freshwater amphipod Gammarus pulex. The optimum cation and co-factor concentrations for maximal gill Na(+), K(+)-ATPase activity in G. pulex were 100mM Na(+), 15mM K(+), 15mM Mg(2+) and 5mM ATP, at pH 7.2. The effects of salinity acclimation on gill Na(+), K(+)-ATPase activity and haemolymph sodium concentrations was investigated in selected gammarid amphipods from different salinity environments. Maximal enzyme activity occurred in all gammarids when acclimated to the most dilute media. This maximal activity coincided with the largest sodium gradient between the haemolymph and the external media. As the haemolymph/medium sodium gradient decreased, a concomitant reduction in gill Na(+), K(+)-ATPase activity occurred. This implicates the involvement of gill Na(+), K(+)-ATPase in the active uptake of sodium from dilute media in hyper-regulating gammarids.  相似文献   

10.
Zhou Y  MacKinnon R 《Biochemistry》2004,43(17):4978-4982
The hydrophobic cell membrane interior presents a large energy barrier for ions to permeate. Potassium channels reduce this barrier by creating a water-filled cavity at the middle of their ion conduction pore to allow ion hydration and by directing the C-terminal "end charge" of four alpha-helices toward the water-filled cavity. Here we have studied the interaction of monovalent cations with the cavity of the KcsA K(+) channel using X-ray crystallography. In these studies, Tl(+) was used as an analogue for K(+) and the total ion-stabilization energy for Tl(+) in the cavity was estimated by measuring its binding affinity. Binding affinity for the Na(+) ion was also measured, revealing a weak selectivity ( approximately 7-fold) favoring Tl(+) over Na(+). The structures of the cavity containing Na(+), K(+), Tl(+), Rb(+), and Cs(+) are compared. These results are consistent with a fairly large (more negative than -100 mV) electrostatic potential inside the cavity, and they also imply the presence of a weak nonelectrostatic component to a cation's interaction with the cavity.  相似文献   

11.
A novel transient outward K(+) current that exhibits inward-going rectification (I(to.ir)) was identified in guinea pig atrial and ventricular myocytes. I(to.ir) was insensitive to 4-aminopyridine (4-AP) but was blocked by 200 micromol/l Ba(2+) or removal of external K(+). The zero current potential shifted 51-53 mV/decade change in external K(+). I(to.ir) density was twofold greater in ventricular than in atrial myocytes, and biexponential inactivation occurs in both types of myocytes. At -20 mV, the fast inactivation time constants were 7.7 +/- 1.8 and 6.1 +/- 1.2 ms and the slow inactivation time constants were 85.1 +/- 14.8 and 77.3 +/- 10.4 ms in ventricular and atrial cells, respectively. The midpoints for steady-state inactivation were -36.4 +/- 0.3 and -51.6 +/- 0.4 mV, and recovery from inactivation was rapid near the resting potential (time constants = 7.9 +/- 1.9 and 8.8 +/- 2.1 ms, respectively). I(to.ir) was detected in Na(+)-containing and Na(+)-free solutions and was not blocked by 20 nmol/l saxitoxin. Action potential clamp revealed that I(to.ir) contributed an outward current that activated rapidly on depolarization and inactivated by early phase 2 in both tissues. Although it is well known that 4-AP-sensitive transient outward current is absent in guinea pig, this Ba(2+)-sensitive and 4-AP-insensitive K(+) current has been overlooked.  相似文献   

12.
The influence of external sodium ions on the sodium pump in erythrocytes   总被引:6,自引:0,他引:6  
1. A study has been made of the interaction between Na(+) and K(+) on the adenosine triphosphatase activity of erythrocyte ;ghosts', and on the K(+) influx and Na(+) efflux of intact erythrocytes. The adenosine triphosphatase activity and the ion movements were greater at a low external K(+) concentration in the absence of Na(+) than they were in the presence of 150mm-Na(+). The inhibition by external Na(+) of K(+) influx had an inhibitory constant of 5-10mm. 2. Activation by K(+) of kidney microsomal adenosine triphosphatase was retarded by Na(+), and activation by Na(+) was retarded by K(+). Fragmented erythrocyte membranes behaved similarly. 3. These observations suggest that there is competition between Na(+) and K(+) at the K(+)-sensitive site of the membrane.  相似文献   

13.
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and promotes translocation of the Na(+),K(+)-ATPase α(1)-subunit to the plasma membrane and increases Na(+),K(+)-ATPase activity as assessed by ouabain-sensitive (86)Rb(+) uptake. Cyanide-induced artificial anoxia, as well as a direct AMPK activator (A-769662) also increase AMPK phosphorylation and Na(+),K(+)-ATPase activity. Thus, different stimuli that target AMPK concomitantly increase Na(+),K(+)-ATPase activity. The effect of AICAR on Na(+),K(+)-ATPase in L6 myotubes was attenuated by Compound C, an AMPK inhibitor, as well as siRNA-mediated AMPK silencing. The effects of AICAR on Na(+),K(+)-ATPase were completely abolished in cultured primary mouse muscle cells lacking AMPK α-subunits. AMPK stimulation leads to Na(+),K(+)-ATPase α(1)-subunit dephosphorylation at Ser(18), which may prevent endocytosis of the sodium pump. AICAR stimulation leads to methylation and dephosphorylation of the catalytic subunit of the protein phosphatase (PP) 2A in L6 myotubes. Moreover, AICAR-triggered dephosphorylation of the Na(+),K(+)-ATPase was prevented in L6 myotubes deficient in PP2A-specific protein phosphatase methylesterase-1 (PME-1), indicating a role for the PP2A·PME-1 complex in AMPK-mediated regulation of Na(+),K(+)-ATPase. Thus contrary to the common paradigm, we report AMPK-dependent activation of an energy-consuming ion pumping process. This activation may be a potential mechanism by which exercise and metabolic stress activate the sodium pump in skeletal muscle.  相似文献   

14.
The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na(+),K(+)-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na(+),K(+)-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na(+),K(+)-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na(+),K(+)-ATPase.  相似文献   

15.
Modulation of the current generated by the Na+/K+ pump by membrane potential and protein kinases was investigated in oocytes of Xenopus laevis. In addition to a positive slope region in the current-voltage (I-V) relationship of the Na+/K+ pump, a negative slope region has been described in these cells (Lafaire & Schwarz, 1986) and has been attributed to a voltage-dependent apparent Km value for pump stimulation by external [K+] (Rakowski et al., 1991). To study this feature in more detail, Xenopus oocytes were used for comparative analysis of the negative slope of the I-V relationship of the endogenous Na+/K+ pump and of the Na+/K+ pump of the electric organ of Torpedo californica expressed in the oocytes. The effects of stimulation of protein kinases A and C on the negative slope were also analyzed. To investigate the negative slope over a wide potential range, experiments were performed in Na(+)-free solution and in the presence of high concentrations of Ba2+ and tetraethylammonium, to block all nonpump related K(+)-sensitive currents. Pump currents and pump-mediated fluxes were determined as differences of currents or fluxes in solutions with and without extracellular K+. The voltage dependence of the Km value for stimulation of the Na+/K+ pump by external [K+] shows significant species differences. Over the entire voltage range from -140 to +20 mV, the Km value for the Na+/K+ pump of Torpedo electroplax is substantially higher than for the endogenous pump and exhibits more pronounced voltage dependence. For the Xenopus pump, the voltage dependence can be described by voltage-dependent stimulation by external [K+] and can be interpreted by voltage-dependent K+ binding, assuming that an effective charge between 0.37 and 0.56 of an elementary charge is moved in the electrical field. An analogous evaluation of the voltage dependence of the Torpedo pump requires the assumption of movement of two effective charges of 0.16 and 1.0 of an elementary charge. Application of 1,2-dioctanoyl-sn-glycerol (diC8, 10-50 microM), which is known to stimulate protein kinase C, reduces the maximum activity of the Xenopus pumps in the oocyte membrane by 40% and modulates the voltage dependence of K+ stimulation. For the endogenous Xenopus pump, the apparent effective charge increased from 0.37 to 0.51 of elementary charge and the apparent Km at 0 mV increased from 0.46 to 0.83 mM. For the Torpedo pump, one of the apparent effective charges increased from 1.0 to 2.5 of elementary charge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The kinetic properties of the rat liver microsomal ATPase, with respect to Na(+), K(+) and AT P requirements were examined. Presence of Na(+) and K(+), or both hardly caused any stimulation of the enzyme activity. The Km values for Na(+) and K(+) were substantially low (0.32 and 0.05 mM, respectively), compared to those reported for the Na(+), K(+) ATPasesfrom different tissues. Substrate kinetics studies revealed that in the absence of Na(+) and K(+), ATP is an activator of the enzyme. The enzyme displayed increased activity with increase in the energy of activation in the absence of Na(+) and K(+). The activity was partially inhibited by ouabain only in the presence of Na(+) and K(+). The results suggest that the liver microsomal enzyme is not a Na(+), K(+) ATPase, but has requirement of monovalent cations for the regulation of its activity. Also, the beta3 subunit of the enzyme has a Km lowering effect.  相似文献   

17.
The kinetics of a type IIb Na(+)-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (Km(pi)) of 10 +/- 1 microM: at -60 mV. Unlike for rat NaPi-IIa, (Km(pi)) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na(+) (Km(na)) was 23 +/- 1 mM: at -60 mV, and the Na(+) activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na(+). The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for -120 mV 相似文献   

18.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

19.
Anaerobic growth of Aerobacter aerogenes on citrate as a carbon source required the presence of Na(+). The growth rate increased with increasing Na(+) concentration and was optimal at 0.10 m Na(+). The requirement was specific for Na(+), which could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). K(+) was required for growth in the presence of Na(+), the optimal K(+) concentration being 0.15 mm. Enzyme profiles were determined on cells grown in three different media: (i) intermediate Na(+), high K(+) concentration, (ii) high Na(+), high K(+) concentration, and (c) high Na(+), low K(+) concentration. All cells contained the enzymes of the citrate fermentation pathway, namely, citritase and the Na(+)-requiring oxalacetate (OAA) decarboxylase. All of the enzymes of the citric acid cycle were present, except alpha-ketoglutarate dehydrogenase which could not be detected. The incomplete citric acid cycle was, in effect, converted into two biosynthetic pathways leading to glutamate and succinate, respectively. The specific activities of citritase and OAA decarboxylase were lowest in medium (i), and under these conditions the activity of OAA decarboxylase appeared to be limited in vivo by the availability of Na(+). Failure of A. aerogenes to grow anaerobically on citrate in the absence of Na(+) can be explained at the enzymatic level by the Na(+) requirement of the OAA decarboxylase step of the citrate fermentation pathway and by the absence of an alternate pathway of citrate catabolism.  相似文献   

20.
Kong BY  Clarke RJ 《Biochemistry》2004,43(8):2241-2250
Kinetic models are presented that allow the Na(+),K(+)-ATPase steady-state turnover number to be estimated at given intra- and extracellular concentrations of Na(+), K(+), and ATP. Based on experimental transient kinetic data, the models utilize either three or four steps of the Albers-Post scheme, that is, E(2) --> E(1), E(1) --> E(2)P (or E(1) --> E(1)P and E(1)P --> E(2)P), and E(2)P --> E(2), which are the major rate-determining steps of the enzyme cycle. On the time scale of these reactions, the faster binding steps of Na(+), K(+), and ATP to the enzyme are considered to be in equilibrium. Each model was tested by comparing calculations of the steady-state turnover from rate constants and equilibrium constants for the individual partial reactions with published experimental data of the steady-state activity at varying Na(+) and K(+) concentrations. To provide reasonable agreement between the calculations and the experimental data, it was found that Na(+)/K(+) competition for cytoplasmic binding sites was an essential feature required in the model. The activity was also very dependent on the degree of K(+)-induced stimulation of the reverse reaction E(1) --> E(2). Taking into account the physiological substrate concentrations, the models allow the most likely potential sites of short-term Na(+),K(+)-ATPase regulation to be identified. These were found to be (a) the cytoplasmic Na(+) and K(+) binding sites, via changes in Na(+) or K(+) concentration or their dissociation constants, (b) ATP phosphorylation (as a substrate), via a change in its rate constant, and (c) the position of the E(2)<==>E(1) equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号