首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells.  相似文献   

3.
4.
H2O2 intensifies CN−-induced apoptosis in pea leaves   总被引:1,自引:0,他引:1  
H2O2 intensifies CN(-)-induced apoptosis in stoma guard cells and to lesser degree in basic epidermal cells in peels of the lower epidermis isolated from pea leaves. The maximum effect of H2O2 on guard cells was observed at 10(-4) M. By switching on non-cyclic electron transfer in chloroplasts menadione and methyl viologen intensified H2O2 generation in the light, but prevented the CN--induced apoptosis in guard cells. The light stimulation of CN- effect on guard cell apoptosis cannot be caused by disturbance of the ribulose-1,5-bisphosphate carboxylase function and associated OH* generation in chloroplasts with participation of free transition metals in the Fenton or Haber-Weiss type reactions as well as with participation of the FeS clusters of the electron acceptor side of Photosystem I. Menadione and methyl viologen did not suppress the CN(-)-induced apoptosis in epidermal cells that, unlike guard cells, contain mitochondria only, but not chloroplasts. Quinacrine and diphenylene iodonium, inhibitors of NAD(P)H oxidase of cell plasma membrane, had no effect on the respiration and photosynthetic O2 evolution by leaf slices, but prevented the CN(-)-induced guard cell death. The data suggest that NAD(P)H oxidase of guard cell plasma membrane is a source of reactive oxygen species (ROS) needed for execution of CN(-)-induced programmed cell death. Chloroplasts and mitochondria were inefficient as ROS sources in the programmed death of guard cells. When ROS generation is insufficient, exogenous H2O2 exhibits a stimulating effect on programmed cell death. H2O2 decreased the inhibitory effects of DCMU and DNP-INT on the CN(-)-induced apoptosis of guard cells. Quinacrine, DCMU, and DNP-INT had no effect on CN(-)-induced death of epidermal cells.  相似文献   

5.
Fath A  Bethke PC  Jones RL 《Plant physiology》2001,126(1):156-166
Gibberellins (GAs) initiate a series of events that culminate in programmed cell death, whereas abscisic acid (ABA) prevents this process. Reactive oxygen species (ROS) are key elements in aleurone programmed cell death. Incubation of barley (Hordeum vulgare) aleurone layers in H2O2 causes rapid death of all cells in GA- but not ABA-treated layers. Sensitivity to H2O2 in GA-treated aleurone cells results from a decreased ability to metabolize ROS. The amounts and activities of ROS scavenging enzymes, including catalase (CAT), ascorbate peroxidase, and superoxide dismutase are strongly down-regulated in aleurone layers treated with GA. CAT activity, protein, and Cat2 mRNA decline rapidly following exposure of aleurone layers to GA. In ABA-treated layers, on the other hand, the amount and activity of CAT and Cat2 mRNA increases. Incubation in ABA maintains high amounts of ascorbate peroxidase and superoxide dismutase, whereas GA brings about a rapid reduction in the amounts of these enzymes. These data imply that GA-treated cells loose their ability to scavenge ROS and that this loss ultimately results in oxidative damage and cell death. ABA-treated cells, on the other hand, maintain their ability to scavenge ROS and remain viable.  相似文献   

6.
Beta-thujaplicin Is a natural troponoid with strong antifungal, antiviral, and anticancer activities. Beta-thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. Superoxide anion radical (O2*-) induced cell death and inhibited beta-thujaplicin accumulation, whereas hydrogen peroxide (H2O2) induced beta-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2*- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced beta-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. Interaction among NO, H2O2, and O2*- shows that NO production and H2O2 production are interdependent, but NO and O2*- accumulation were negatively related because of coconsumption of NO and O2*-. NO- and O2*- -induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2*- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.  相似文献   

7.
Plant programmed cell death (PCD) is a genetically controlled process that plays an important role in development and stress responses. Reactive oxygen species (ROS) are key inducers of PCD. The addition of 50 mM H?O? to tobacco Bright Yellow-2 (TBY-2) cell cultures induces PCD. A comparative proteomic analysis of TBY-2 cells treated with 50 mM H?O? for 30 min and 3 h was performed. The results showed early down-regulation of several elements in the cellular redox hub and inhibition of the protein repair-degradation system. The expression patterns of proteins involved in the homeostatic response, in particular those associated with metabolism, were consistently altered. The changes in abundance of several cytoskeleton proteins confirmed the active role of the cytoskeleton in PCD signalling. Cells undergoing H?O?-induced PCD fail to cope with oxidative stress. The antioxidant defence system and the anti-PCD signalling cascades are inhibited. This promotes a genetically programmed cell suicide pathway. Fifteen differentially expressed proteins showed an expression pattern similar to that previously observed in TBY-2 cells undergoing heat shock-induced PCD. The possibility that these proteins are part of a core complex required for PCD induction is discussed.  相似文献   

8.
Active oxygen species (AOS), especially hydrogen peroxide, play a critical role in the defence of plants against invading pathogens and in the hypersensitive response (HR). This is characterized by the induction of a massive production of AOS and the rapid appearance of necrotic lesions is considered as a programmed cell death (PCD) process during which a limited number of cells die at the site of infection. This work was aimed at investigating the mode of cell death observed in cultures of BY-2 tobacco cells exposed to H(2)O(2). It was shown that H(2)O(2) is able to induce various morphological cell death features in cultured tobacco BY-2 cells. The hallmarks of cell death observed with fluorescent and electron microscopy differed greatly with the amount of H(2)O(2) added to the cell culture. The appearance of nuclear fragmentation similar to 'apoptotic bodies' associated with a fragmentation of the nuclear DNA into small fragments appear for almost 18% of the cells treated with 12.5 mM H(2)O(2). The early stages of the induction of this PCD process consisted in cell shrinkage and chromatin condensation at the periphery of the nucleus. Above 50 mM, H(2)O(2) induces high necrotic cell death. These data suggest that H(2)O(2)-induced cell damage is associated with the induction of various cell death processes that could be involved differently in plant defence reactions.  相似文献   

9.
Caspase-independent programmed necrosis is a highly regulated cellular demise that displays morphological and biochemical necrotic hallmarks, such as an earlier permeability of the plasma membrane and lactate dehydrogenase (LDH) leakiness. This form of programmed cell death (PCD) is regulated by AIF, a FAD-dependent oxidoreductase, which is released from the mitochondria to the nucleus where it induces chromatin condensation and DNA fragmentation. Some years ago, it has been established that the sequential activation of poly(ADP-ribose) polymerase-1 (PARP-1), calpains, and Bax regulate the mitochondrial AIF release associated to programmed necrosis. But, what happens when AIF is in the nucleus? How does this protein induce chromatinolysis and programmed necrosis? Recently, we have unraveled some of the mechanisms underlying the nuclear action of AIF in this type of caspase-independent cell death. Indeed, AIF plays a key role in programmed necrosis by its ability to organize a DNA-degrading complex with H2AX and Cyclophiline A (CypA). The AIF/H2AX link is indeed a critical event and explains the nuclear AIF apoptogenic action. In the present article, we outline the current knowledge on cell death by programmed necrosis and discuss the relevance of the AIF/H2AX/CypA DNA-degrading complex in the regulation of this original form of cell death.  相似文献   

10.
H2O2诱导Neuro—2a细胞死亡机理的研究   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS), such as H2O2, can be produced by enzymes involved in electron leakage of respiration chain in mitochondria, and by neurochemical enzymes such as monoamine oxidase in neural cells. ROS are toxic to cells, and can result in cell death. ROS also play an important role in some diseases, especially in neurodegenerative diseases by yet unknown mechanisms. In the current research, the N-2a neuroblastoma cell was treated with H2O2, and the morphological changes of cell death were characterized. Our results show that N-2a cell death is different from classical apoptosis, but belongs type II nerve cell programmed death, which shows condensed chromatin within intact nuclear envelope and no apoptotic body. The chromatin DNA of dead cells shows no internucleosomal cleavage, as well as no requirement for caspase-3, 1 activity. However, the H2O2-induced N-2a cell death can be inhibited by Bcl-XL. It can be concluded that type II nerve cell death is the result of cell toxicity mediated by ROS. The results pave the way for further research of type II nerve cell death.  相似文献   

11.
12.
There is no life without oxygen. It plays a critical role in the existence and development of life. The research on how life senses oxidative signals has become a basic topic in the field of life science. Environmental stress conditions such as light, dro…  相似文献   

13.
Zhang W  Wang C  Qin C  Wood T  Olafsdottir G  Welti R  Wang X 《The Plant cell》2003,15(10):2285-2295
Hydrolysis of common membrane phospholipids occurs in response to various environmental stresses, but the control and cellular function of this hydrolysis are not fully understood. Hydrogen peroxide (H2O2) is a pivotal signaling molecule involved in various stress responses. Here, we show that the plasma membrane-bound phospholipase D, PLDdelta, is activated in response to H2O2 and that the resulting phosphatidic acid (PA) functions to decrease H2O2-promoted programmed cell death. The Arabidopsis genome has 12 PLD genes, and knockout of PLDdelta abolishes specifically the oleate-stimulated PLD activity. H2O2 treatment of Arabidopsis cells activates PLD enzyme activity, and ablation of PLDdelta abolishes that activation. PLDdelta-null cells display increased sensitivity to H2O2-induced cell death. The addition of PA to PLDdelta-null cells mitigates the H2O2 effect, whereas suppression of the H2O2-induced PA formation in wild-type cells increases the effect. PLDdelta-ablated plants exhibit increased susceptibility to stress. These results demonstrate that activation of oleate-stimulated PLDdelta constitutes an important step in the plant response to H2O2 and increasing plant stress tolerance.  相似文献   

14.
de J  Yakimova ET  Kapchina VM  Woltering EJ 《Planta》2002,214(4):537-545
Camptothecin, a topo isomerase-I inhibitor used in cancer therapy, induces apoptosis in animal cells. In tomato (Lycopersicon esculentum Mill.) suspension cells, camptothecin induces cell death that is accompanied by the characteristic nuclear morphological changes such as chromatin condensation and nuclear and DNA fragmentation that are commonly associated with apoptosis in animal systems. These effects of camptothecin can effectively be blocked by inhibitors of animal caspases, indicating that, in tomato suspension cells, camptothecin induces a form of programmed cell death (PCD) with similarities to animal apoptosis (A.J. De Jong et al. (2000) Planta 211:656-662). Camptothecin induced cell death was employed to study processes involved in plant PCD. Camptothecin induced a transient increase in H2O2 production starting within 2 h of application. Both camptothecin-induced cell death and the release of H2O2 were effectively blocked by application of the calcium-channel blocker lanthanum chloride, the caspase-specific inhibitor Z-Asp-CH2-DCB, or the NADPH oxidase inhibitor diphenyl iodonium, indicating that camptothecin exerts its effect on cell death through a calcium- and caspase-dependent stimulation of NADPH oxidase activity. In addition, we show that ethylene is an essential factor in camptothecin-induced PCD. Inhibition of either ethylene synthesis or ethylene perception by L-alpha-(2-aminoethoxyvinyl)glycine or silver thiosulphate, respectively, blocked camptothecin-induced H2O2 production and PCD. Although, in itself, insufficient to trigger H2O2 production and cell death, exogenous ethylene greatly stimulated camptothecin-induced H2O2 production and cell death. These results show that ethylene is a potentiator of the camptothecin-induced oxidative burst and subsequent PCD in tomato cells. The possible mechanisms by which ethylene stimulates cell death are discussed.  相似文献   

15.
In recent years, yeast has been proven to be a useful model organism for studying programmed cell death. It not only exhibits characteristic markers of apoptotic cell death when heterologous inducers of apoptosis are expressed or when treated with apoptosis inducing drugs such as hydrogen peroxide (H(2)O(2)) or acetic acid, but contains homologues of several components of the apoptotic machinery identified in mammals, flies and nematodes, such as caspases, apoptosis inducing factor (AIF), Omi/HtrA2 and inhibitor-of-apoptosis proteins (IAPs). In this review, we focus on the role of negative regulators of apoptosis in yeasts. Bir1p is the only IAP protein in Saccharomyces cerevisiae and has long been known to play a role in cell cycle progression by acting as kinetochore and chromosomal passenger protein. Recent data established Bir1p's protective function against programmed cell death induced by H(2)O(2) treatment and in chronological ageing. Other factors that have a direct or indirect influence on intracellular levels of reactive oxygen species (ROS) and thus lead to apoptosis if they are misregulated or non-functional will be discussed.  相似文献   

16.
Oxidative stress caused by hydrogen peroxide (H2O2) triggers the hypersensitive response of plants to pathogens. Here, short pulses of H2O2 are shown to cause death of lentil (Lens culinaris) root protoplasts. Dead cells showed DNA fragmentation and ladder formation, typical hallmarks of apoptosis (programmed cell death). DNA damage was evident 12 h after the H2O2 pulse and reached a maximum 12 h later. The commitment of cells to apoptosis caused by H2O2 was characterized by an early increase of lipoxygenase activity, of ultraweak luminescence and of membrane lipid peroxidation, which reached 720, 350 and 300% of controls, respectively, at 6 h after H2O2 treatment. Increased lipoxygenase activity was paralleled by an increase of its protein and mRNA level. Lipoxygenase inhibitors nordihydroguaiaretic acid, eicosatetraynoic acid and plamitoyl ascorbate prevented H2O2-induced DNA fragmentation and ultraweak luminescence, only when added together with H2O2, but not when added 8 h afterwards. Inhibitory anti-lipoxygenase monoclonal antibodies, introduced into the protoplasts by electroporation, protected cells against H2O2-induced apoptosis. On the other hand, lentil lipoxygenase products 9- and 13-hydroperoxy-octadecadienoic acids and their reduced alcohol derivatives were able to force the protoplasts into apoptosis. Altogether, these findings suggest that early activation of lipoxygenase is a key element in the execution of apoptosis induced by oxidative stress in plant cells, in a way surprisingly similar to that observed in animal cells.  相似文献   

17.
Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H(2)O(2) production, depletion of ATP, and cell death. The increased generation of H(2)O(2) also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H(2)O(2) amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.  相似文献   

18.
Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.  相似文献   

19.
Hydrogen peroxide (H2O2) is now recognised as a key signalling molecule in eukaryotes. In plants, H2O2 is involved in regulating stomatal closure, gravitropic responses, gene expression and programmed cell death. Although several kinases, such as oxidative signal-inducible 1 (OXI1) kinase and mitogen-activated protein kinases are known to be activated by exogenous H2O2, little is known about the proteins that directly react with H2O2. Here, we utilised a proteomic approach, using iodoacetamide-based fluorescence tagging of proteins in conjunction with mass spectrometric analysis, to identify several proteins that might be potential targets of H2O2 in the cytosolic fraction of Arabidopsis thaliana, the most prominent of which was cytosolic glyceraldehyde 3-phosphate dehydrogenase (cGAPDH; EC 1.2.1.12). cGAPDH from Arabidopsis is inactivated by H2O2 in vitro, and this inhibition is reversible by the subsequent addition of reductants such as reduced glutathione (GSH). It has been suggested recently that Arabidopsis GAPDH has roles outside of its catalysis as part of glycolysis, while in other systems this includes that of mediating reactive oxygen species (ROS) signalling. Here, we suggest that cGAPDH in Arabidopsis might also have such a role in mediating ROS signalling in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号