首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Progestin, estrogen and androgen G-protein coupled receptors in fish gonads   总被引:5,自引:0,他引:5  
The identities of the membrane receptors mediating the majority of rapid, cell surface-initiated, nongenomic (i.e. nonclassical) steroid actions described to date are unclear. Two novel 7-transmembrane spanning proteins, representing two distinct classes of steroid membrane receptors, membrane progestin receptor alpha (mPRalpha) and a membrane estrogen receptor (mER), GPR30, have recently been identified in several vertebrate species. Evidence that both receptors activate G-proteins and function as G-protein coupled receptors (GPCRs) is briefly reviewed. New data on progestin actions on fish gametes suggest a widespread involvement of mPRalpha in oocyte maturation and sperm hyperactivity in this vertebrate group. Information on the second messenger pathways activated upon estrogen binding to a membrane estrogen receptor in croaker gonads and preliminary evidence for the presence of a GPR30-like protein in fish gonads are discussed. Finally, initial characterization of the ligand binding, G-protein activation and molecular size of a membrane androgen receptor (mAR) in croaker ovaries suggests the presence of a third unique steroid receptor in fish gonads that also may function as a GPCR.  相似文献   

4.
Spermatozoa are highly specialized cells which transport a single-copy haploid genome to the site of fertilization. Before this, spermatozoa undergo a series of biochemical and functional modifications. In recent years, the crucial role of androgens and estrogens in proper germ cell differentiation during spermatogenesis has been demonstrated. However, their implication in the biology of mature male gametes is still to be defined. Our study provides evidence for the first time that aromatase, the androgen receptor (AR), as well as the estrogen receptors α and β (ERα and ERβ), are present in bank vole spermatozoa. We demonstrated the region-specific localization of these proteins in bank vole spermatozoa using confocal microscopy. Immunoreactive aromatase was observed in the proximal head region and in both the proximal and distal tail regions, whereas steroid hormone receptors were found only in the proximal region of the sperm head. Protein expression in sperm lysates was detected by Western blot analysis. Immunohistochemical results were analyzed quantitatively. Our results show that bank vole spermatozoa are both a source of estrogens and a target for steroid hormone action. Moreover, the presence of aromatase and steroid hormone receptors in the bank vole spermatozoa indicates a potential function of these proteins during capacitation and/or the acrosome reaction.  相似文献   

5.

Background  

Androgens and estrogens are crucial for mammalian sperm differentiation but their role in biology of mature male gamete is not still defined. The expression of proteins involved in the biosynthesis and action of these steroid hormones has been demonstrated in human spermatozoa, but very few data have been reported in mature sperm from non human species. The purpose of the current study was to investigate the expression of aromatase (P450arom), estrogen (ERalpha/ERbeta) and androgen (AR) receptors in ejaculated spermatozoa of pig.  相似文献   

6.
Newborn female BALB/cCrgl mice receiving 5 micrograms of testosterone or 0.01 micrograms of diethylstilbestrol daily for the first 5 days of life were examined at various times after secondary exposure to testosterone and 17 beta-estradiol, respectively. Neonatal administration of testosterone induced squamous stratification associated with constant cornification of the vaginal epithelium in intact mice. Later exposure to testosterone suppressed cornification, resulting in superficial epithelial mucification in almost all mice by 4 months of age. However, at 6 months of age, the incidence of mucification dropped to 58%. Cervicovaginal lesions developed in the groups of mice given neonatal testosterone in combination with later testosterone and sacrificed at 4 and 6 months of age. Continuous vaginal stratification was found in 14% of ovariectomized, neonatally diethylstilbestrol-treated mice at 13 months of age. The incidence of this ovary-independent change increased to 40% at 24 months of age. Postnatal estrogen replacement significantly increased the incidence of squamous stratification in these mice. Neonatal diethylstilbestrol treatment alone induced cervicovaginal lesions in 4.5% of ovariectomized mice at 13 months of age; secondary 17 beta-estradiol exposure significantly enhanced the development of lesions to 44%. However, at 24 months of age, there was no difference in the incidence of lesions in ovariectomized, neonatally treated mice with or without the secondary 17 beta-estradiol treatment. These results suggest that the effects of neonatal exposure to a relatively low dose of estrogen, androgen, or related substance may become obvious later in life as a result of later exposure to hormones.  相似文献   

7.
Vascular cell signaling by membrane estrogen receptors   总被引:3,自引:0,他引:3  
Hisamoto K  Bender JR 《Steroids》2005,70(5-7):382-387
  相似文献   

8.
9.
10.
Previous studies of the anti 8.5S progestin receptor monoclonal antibody KN 382/EC1 showed that it was specific for nontransformed progestin receptors. However, with different methods of tissue disruption and the use of protease inhibitors, we found that other nontransformed steroid receptors formed immune complexes with KN 382/EC1. Binding of the antibody to rabbit uterine estrogen, progestin, and androgen and liver glucocorticoid receptor systems was characterized by sucrose density gradient centrifugation, high-pressure liquid chromatography (HPLC), immunoadsorption, and immunoblotting. Immobilized KN 382/EC1 adsorbed both Mr 59,000 and Mr 92,000 proteins. The Mr 92,000 protein appeared to be bound to the antigenic Mr 59,000 protein, and the two proteins were present in apparently the same stoichiometric relationship in several tissues. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoadsorbed material revealed appreciable amounts of both proteins in testis, stomach, lung, liver, uterus, and kidney. Only trace amounts were found in skeletal or heart muscle, and none was found in blood serum. Cleveland digestion of isolated Mr 59,000 and 92,000 proteins revealed dissimilar peptide constituents. Immunoblots of material from uterus and liver resulted in staining of the Mr 59,000 protein but not the Mr 92,000 protein. We conclude that similar antigenic determinants reside in components of several nontransformed steroid receptors and they reside on an Mr 59,000 protein. It is likely, therefore, that there are common components present in nontransformed steroid receptors.  相似文献   

11.
12.
13.
14.
15.
Our previous studies have shown that diabetes in the male streptozotocin (STZ)-induced diabetic rat is characterized by a decrease in circulating testosterone and concomitant increase in estradiol levels. Interestingly, this increase in estradiol levels persists even after castration, suggesting extra-testicular origins of estradiol in diabetes. The aim of the present study was to examine whether other target organs of diabetes may be sources of estradiol. The study was performed in male Sprague–Dawley non-diabetic (ND), STZ-induced diabetic (D) and STZ-induced diabetic castrated (Dcas) rats (n = 8–9/group). 14 weeks of diabetes was associated with decreased testicular (ND, 26.3 ± 4.19; D, 18.4 ± 1.54; P < 0.05), but increased renal (ND, 1.83 ± 0.92; D, 7.85 ± 1.38; P < 0.05) and ocular (D, 23.4 ± 3.66; D, 87.1 ± 28.1; P < 0.05) aromatase activity. This increase in renal (Dcas, 6.30 ± 1.25) and ocular (Dcas, 62.7 ± 11.9) aromatase activity persisted after castration. The diabetic kidney also had increased levels of tissue estrogen (ND, 0.31 ± 0.01; D, 0.51 ± 0.11; Dcas, 0.45 ± 0.08) as well as estrogen receptor alpha protein expression (ND, 0.63 ± 0.09; D, 1.62 ± 0.28; Dcas, 1.38 ± 0.20). These data suggest that in male STZ-induced diabetic rats, tissues other than the testis may become sources of estradiol. In particular, the diabetic kidney appears to produce estradiol following castration, a state that is associated with a high degree or renal injury. Overall, our data provides evidence for the extra-testicular source of estradiol that in males, through an intracrine mechanism, may contribute to the development and/or progression of end-organ damage associated with diabetes.  相似文献   

16.
17.
18.
In order to assess the relationship between anabolic steroid administration and gynecomastia, we studied the effects produced by administering nandrolone decanoate and a mixture of propionate, phenilpropionate, isocaproate and testosterone decanoate to bodybuilders during a six month period. The following significant changes occurred: a 53% reduction in serum testosterone; LH and FSH levels were suppressed to 77% and 87%, respectively, in comparison to control values; and although 45% of the subjects showed an increase in serum estradiol levels, no statistically significant differences were found compared with control estradiol levels. With regard to estradiol and androgen receptors, 85% of gynecomastia tissue contained estradiol or androgen receptors, while 40% contained both. The mean values of estradiol and androgen receptors in the cytosol were 65 +/- 10 and 52 +/- 5 fmol/mg protein, respectively. Nuclear androgen and estradiol receptor levels were 33 +/- 7 and 67.5 +/- 9 fmol/mg protein, respectively. The presence of hormone receptors in gynecomastia receptive cells provides support for the hypothesis that gynecomastia is steroid-dependent.  相似文献   

19.
Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meERα and huERα, meERβ1 and huERβ, meERβ2, and huERβ with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meARα and huAR, meARβ, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for Cα atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.  相似文献   

20.
T J Chen  W W Tu 《Life sciences》1992,50(21):1639-1647
The present study was conducted to measure the levels of estrogen and androgen receptors (ER and AR, receptively) simultaneously in the anterior pituitary (AP), and various brain regions from adult male and proestrous female hamsters. Medial preoptic area (MPOA), medial basal hypothalamus (MBH), lateral hypothalamus (LH), medial forebrain bundle (MFB), and amygdala (AMG) were identified and removed from 200-microns frozen brain sections by the Palkovits punch-out technique. ER and AR were determined by the in vitro binding assay using [3H]-estradiol and [3H]-methyltrienolone as the binding ligands. In males, high levels of AR were found in the MPOA, MBH, and AP. In females, the MPOA, MBH, LH, and AP contained high levels of ER. The males exhibited significantly higher levels of AR than females in the MPOA, MBH, and LH, whereas the ER levels in these areas were higher in females. In males, ER and AR contents in the AP were higher, but the contents in the AMG were lower as compared to those of females. The calculated ER/AR ratio in MPOA, MBH, and LH were lowest in males. On the contrary, the ratio in these areas were highest in females. These data suggest that sex differences in response to estrogen and androgen may in part be due to sex differences in ER and AR contents in specific brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号