首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational changes of bovine α-lactalbumin in sodium dodecyl sulfate (SDS) solution were studied with the circular dichroism (CD) method using a dilute phosphate buffer ofpH 7.0 and ionic strength 0.014. The proportions of α-helix and β-structure in α-lactalbumin were 34% and 12%, respectively, in the absence of SDS. In the SDS solution, the helicity increased to 44%, while the β-structure disappeared. In order to verify the structural change from β-structure to α-helix, the moiety, assuming the β-structure in the α-lactalbumin, was isolated by a chymotryptic digestion. The structure of this α-lactalbumin fragment, Phe31-Ile59, was almost disordered. However, the fragment adopted a considerable amount of α-helical structure in the SDS solution. On the other hand, the tertiary structure of α-lactalbumin, detected by changes of CD in the near-ultraviolet region, began to be disrupted before the secondary structural change in the surfactant solution. Dodecyl sulfate ions of 80 mol were cooperatively bound to α-lactalbumin. Although the removal of the bound dodecyl sulfate ions was tried by the dialysis against the phosphate buffer for 5 days, 4 mol dodecyl sulfates remained per mole of the protein. The remaining amount agreed with the number of stoichiometric binding site, determined by the Scatchard plot, indicating that the stoichiometric binding was so tight.  相似文献   

2.
Four disulfide bridges of bovineα-lactalbumin (α-lact) were selectively reduced to obtain its derivatives with three, two, and zero disulfide bridges (designated as 3SS, 2SS, and OSSα-lact, respectively). The original helicity was almost maintained in 3SSα-lact missing only the Cys6-Cysl20 bridge. Upon the reduction of both Cys28-Cys111 and Cys6-Cys120 bridges, various changes occurred in the protein. In particular, the maximum fluorescence of 1-anilinonaphthalene-8-sulfonic acid was observed in this stage. Upon the reduction of all disulfide bridges, the hydrophobic box of the protein, formed by Trp60, Ile95, Tyr103, and Trp104, was disrupted and an internal helical structure was destroyed. The conformation of each derivative was examined mainly in a solution of sodium dodecyl sulfate. In the surfactant solution, the helicity increased from 33% to 37% in 3SSα-lact, from 26% to 31% in 2SSα-lact, and from 18% to 37% in OSSα-lact, as against from 34% to 44% in intactα-lact. On the other hand, the tryptophan fluorescence of each derivative was affected in very low surfactant concentrations, suggesting that the tertiary structure considerably changed prior to the secondary structural change in the surfactant solution.  相似文献   

3.
The peptide bond between Asp66-Pro67 of -lactalbumin was cleaved with formic acid (cleaved-lactalbumin). Secondary structural changes of the cleaved-lactalbumin, in which the two separated polypeptides were joined by disulfide bridges, were examined in solutions of sodium dodecyl sulfate (SDS), urea, and guanidine hydrochloride. The structural changes of the cleaved-lactalbumin were compared with those of the intact protein. The relative proportions of secondary structures were determined by curve fitting of the circular dichroism spectrum. The cleaved-lactalbumin contained 29%-helical structure as against 34% for the intact protein. Some helices of the cleaved-lactalbumin which had been disrupted by the cleavage appeared to be reformed upon the addition of SDS of very low concentration (0.5mM). In the SDS solution, the helicities of both the intact and cleaved proteins increased, attaining 44% at 4mM SDS. On the other hand, the helical structures of the cleaved-lactalbumin began to be disrupted at low concentrations of guanidine hydrochloride and urea compared with that of the intact protein. However, no diffrence was observed in the thermal denaturations of the intact and cleaved proteins, except for the difference in the original helicities. The helicities of both proteins decreased with an increase of temperature up to 65°C and recovered upon cooling.  相似文献   

4.
The ability of sodium taurocholate, cholesterol and oleic, linoleic and palmitoleic acids to induce conformational changes in α-elastin has been studied by circular dichroism. In addition, the influence of Ca2+ ions has been investigated. The formation of inelastic structure (α-helix, β-form) in the protein has been evidenced by spectral data. These results could be of interest in relation to aging and atherogenesis.  相似文献   

5.
The conjugation of polysaccharides to peptides is essential for antigen delivery and vaccine development. Herein, we show that tricine SDS-PAGE in combination with Coomassie Blue staining was adequate to determine the conjugation efficacy of a peptide (epitope 35–55 of myelin oligodendrocyte glycoprotein) to mannan. In addition, tricine SDS-PAGE and periodic acid–Schiff stains were able to monitor the redox state of mannan. Using the described protocol, more than 99.9% of a peptide containing five lysines at its N-terminus was confirmed conjugated to mannan.  相似文献   

6.
Polarized fluorescence from F-actin-ε-ADP in thin filaments reconstituted in a myosin-free single muscle fiber was measured at various concentrations of Ca2+. Four components of polarized fluorescence changed with increasing Ca2+ concentration at pCa values of around 7 to 6, concomitant with a change of the tension generated by the fiber irrigated with myosin in the presence of Mg-ATP. From analysis of observed values of the four components, it was found that the flexibility of the thin filament increased, or the elastic modulus for bending decreased from 5.7 × 10?17 dyn cm2 to 4.7 × 10?17 dyn cm2, when the pCa value decreased from 7 to 6. In the same range of pCa values, the angles of absorption and emission dipoles of ε-ADP changed, suggesting a small rotation of the base-plane of ε-ADP around an axis perpendicular to the F-actin axis.  相似文献   

7.
LYLA1 is a chimeric protein mainly consisting of residues originating from human lysozyme but in which the central part (Ca2+-binding site and helix C) of bovine α-lactalbumin has been inserted. The equilibrium unfolding of this hybrid protein has been examined by circular dichroism and tryptophan fluorescence techniques. The reversible denaturation process induced by temperature or by addition of chemical denaturant is three-state in the case of apo-LYLA1 and two-state in the presence of Ca2+. The Ca2+-bound form of the chimera exhibits higher stability than both wild-type lysozyme and α-lactalbumin. The stability of the apo-form, however, is intermediate between that of the parent molecules. Unfolding of apo-LYLA1 involves an intermediate state that becomes populated to a different extent under various experimental conditions. Combination of circular dichroism with bis-ANS fluorescence experiments has permitted us to characterize the acid state of LYLA1 as a molten globule. Furthermore our results strongly suggest the presence of multiple denatured states depending on external conditions. Received: 24 April 1996 / Accepted: 4 September 1996  相似文献   

8.
Bacillus licheniformis α-amylase (BLA) was chemically modified using 100-fold molar excess of succinic anhydride over protein or 0.66 M potassium cyanate to obtain 42 % succinylated and 81 % carbamylated BLAs. Size and charge homogeneity of modified preparations was established by Sephacryl S-200 HR gel chromatography and polyacrylamide gel electrophoresis. Conformational alteration in these preparations was evident by the larger Stokes radii (3.40 nm for carbamylated and 3.34 nm for succinylated BLAs) compared to 2.43 nm obtained for native BLA. Urea denaturation results using mean residue ellipticity (MRE) as a probe also showed conformational destabilization based on the early start of transition as well as ΔG(D)(H(2)O) values obtained for both modified derivatives and Ca-depleted BLA. Decrease in ΔG(D)(H(2)O) value from 5,930 cal/mol (for native BLA) to 3,957 cal/mol (for succinylated BLA), 3,336 cal/mol (for carbamylated BLA) and 3,430 cal/mol for Ca-depleted BLA suggested reduced conformational stability upon modification of amino groups of BLA or depletion of calcium. Since both succinylation and carbamylation reactions abolish the positive charge on amino groups (both α- and ε- amino), the decrease in conformational stability can be ascribed to the disruption of salt bridges present in the protein which might have released the intrinsic calcium from its binding site.  相似文献   

9.
Equilibria and kinetics of folding/unfolding of α-lactalbumin and its two N-terminal variants were studied by circular dichroism spectroscopy. The two variants were wild-type recombinant and Glu1-deletion (E1M) variants expressed in Escherichia coli. The presence of an extra methionine at the N terminus in recombinant α-lactalbumin destabilized the protein by 2 kcal/mol, while the stability was recovered in the E1M variant in which Glu1 was replaced by Met1. Kinetic folding/unfolding reactions of the proteins, induced by stopped-flow concentration jumps of guanidine hydrochloride, indicated the presence of a burst-phase in refolding, and gave chevron plots with significant curvatures in both the folding and unfolding limbs. The folding-limb curvature was interpreted in terms of accumulation of the burst-phase intermediate. However, there was no burst phase observed in the unfolding kinetics to interpret the unfolding-limb curvature. We thus assumed a sequential four-state mechanism, in which the folding from the burst-phase intermediate takes place via two transition states separated by a high-energy intermediate. We estimated changes in the free energies of the burst-phase intermediate and two transition states, caused by the N-terminal variations and also by the presence of stabilizing calcium ions. The Φ values at the N terminus and at the Ca(2+)-binding site thus obtained increased successively during folding, demonstrating the validity of the sequential mechanism. The stability and the folding behavior of the E1M variant were essentially identical to those of the authentic protein, allowing us to use this variant as a pseudo-wild-type α-lactalbumin in future studies.  相似文献   

10.
Sodium dodecyl sulfate (SDS) at low concentrations considerably enhanced insulin aggregation and reduced the chaperone-like activity of purified camel αS1-casein (αS1-CN). These observed changes were the result of repulsive electrostatic interactions between both negative charged head groups of SDS and αS1-CN, and the net negative charge of insulin molecules, resulting in the greater exposure of hydrophobic patches of insulin and its enhanced aggregation. In contrast, enhanced hydrophobic interactions were primarily responsible for the conformational changes observed in insulin and αS1-CN at high SDS concentrations, resulting in increased binding of SDS and αS1-CN to insulin and its reduced aggregation.  相似文献   

11.
The relative proportions of α-helix, β-sheet, and unordered form in β-lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of β-lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% α-helix and 41% β-sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased β-sheet up to 48% but did not affect the α-helical proportion. The α-helical proportions of nonreduced β-lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the α-helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The β-sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

12.
Glycolipid biosurfactants (GBS) are promising environmentally friendly alternatives to chemical surfactants. Surfactants interact with proteins in many applications, often leading to significant changes in protein properties. Given GBS' marked difference in structure compared to traditional chemical surfactants, it is of interest to investigate their impact on protein structure and stability. Here we combine spectroscopic and calorimetric studies to analyze the interactions between the anionic GBS rhamnolipid (RL) and two model proteins α-lactalbumin in the Ca2 +-free apo-form (αLA) and myoglobin (Mb), whose interactions with traditional surfactants are well known. RL denatures αLA at sub-cmc concentrations (0.1–1 mM) while Mb is only denatured above the cmc, i.e. in the presence of RL micelles. Denaturation leads to increased α-helicity, similar to the effect of SDS. The proteins bind approximately the same amount of RL by weight as SDS. However, RL employs a denaturation mechanism which combines features from non-ionic surfactants (very slow unfolding kinetics and few unfolding steps) with those of SDS (unfolding below the cmc in the case of αLA and the ability to unfold stable proteins in the case of Mb). We ascribe these features to RL's weakly acidic carboxylic head group and complex hydrophobic tail, which lead to a low cmc and low protein affinity. These features restrict the concentration range where RL monomers can bind and denature proteins while still allowing micelles to bind and denature to a significant extent.  相似文献   

13.
The peptide bond between Asp66-Pro67 of α-lactalbumin was cleaved with formic acid (cleavedα-lactalbumin). Secondary structural changes of the cleavedα-lactalbumin, in which the two separated polypeptides were joined by disulfide bridges, were examined in solutions of sodium dodecyl sulfate (SDS), urea, and guanidine hydrochloride. The structural changes of the cleavedα-lactalbumin were compared with those of the intact protein. The relative proportions of secondary structures were determined by curve fitting of the circular dichroism spectrum. The cleavedα-lactalbumin contained 29%α-helical structure as against 34% for the intact protein. Some helices of the cleavedα-lactalbumin which had been disrupted by the cleavage appeared to be reformed upon the addition of SDS of very low concentration (0.5mM). In the SDS solution, the helicities of both the intact and cleaved proteins increased, attaining 44% at 4mM SDS. On the other hand, the helical structures of the cleavedα-lactalbumin began to be disrupted at low concentrations of guanidine hydrochloride and urea compared with that of the intact protein. However, no diffrence was observed in the thermal denaturations of the intact and cleaved proteins, except for the difference in the original helicities. The helicities of both proteins decreased with an increase of temperature up to 65°C and recovered upon cooling.  相似文献   

14.
Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, β- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one β-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3μm. Homocysteinylation of α(S1)- and β-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and other structural features.  相似文献   

15.
The heme iron of the β chains of mammalian hemoglobins are rapidly and selectively oxidized in the presence of excess Cu(II) ions in a reaction that requires the presence of a free -SH groups on the β globin chain. The presence of freely reactive -SH groups on the α chains of cat and sheep hemoglobins does not alter the course of this reaction: only the β hemes are oxidized rapidly by Cu(II) in these hemoglobins. Two equivalents of copper are required for the rapid oxidation of the two β chain hemes per mole of cat hemoglobin, in contrast with the four equivalents that are required for reaction with human hemoglobin. The human-cat hybrid hemoglobins, α2Humanβ2Cat and α2Catβ2Human, required two and four equivalents of copper/mol, respectively, for the reaction. Thus, the kinetics and stoichimetry of the reaction are determined by the nature of the β subunit. Analysis of the esr spectra of the products of the reaction of Cu(II) with these hemoglobins indicate that human hemoglobin and the hybrid α2Catβ2Human contain tight binding sites for two equivalents of Cu(II) that are not involved in the oxidation reaction and are not present in cat hemoglobin or α2Humanβ2Cat. Cat β globin like others (sheep, bovine) that lack the tight binding site, has no histidine residue at 2β. It has phenylalanine in this position. These results support the suggestion of Rifkind et al. (Biochemistry 15,5337[1976]) that the tight binding site is near the amino terminal region of the β chain and is associated with histidine 2β.  相似文献   

16.
The effects of three fatty acids on cytotoxic aggregate formation of Ca2+-depleted bovine α-lactalbumin (apo-BLA) have been studied by UV absorbance spectroscopy and transmission electron microscopy. The experimental results demonstrate that two unsaturated fatty acids, oleic acid and linoleic acid, and one saturated fatty acid, stearic acid, induce the intermediate of apo-BLA at pH 4.0-4.5 to form amorphous aggregates in time- and concentration-dependent manners. These aggregates are dissolved under physiological conditions at 37 °C and further characterized by fluorescence spectroscopy, circular dichroism and time-of-flight mass spectrometry. Our data here indicate that the structural characteristics of these aggregates are similar to those of HAMLET/BAMLET (human/bovine α-lactalbumin made lethal to tumor cells), a complex of the partially unfolded α-lactalbumin with oleic acid. Cell viability experiments indicate the aggregates of apo-BLA induced by oleic acid and linoleic acid show significant dose-dependent cytotoxicity to human lung tumor cells of A549 but those induced by stearic acid have no toxicity to tumor cells. Furthermore, the cytotoxic aggregates of apo-BLA induced by both unsaturated fatty acids induce apoptosis of human lung cancer cell line A549, suggesting that such cytotoxic aggregates of apo-BLA could be potential antitumor drugs. The present study provides insight into the mechanism of fatty acid-dependent oligomerization and cytotoxicity of α-lactalbumin, and will be helpful in the understanding of the molecular mechanism of HAMLET/BAMLET formation.  相似文献   

17.
The intrinsically disordered protein α-synuclein aggregates into amyloid fibrils, a process known to be implicated in several neurodegenerative states. Partially folded forms of the protein are thought to trigger the aggregation process. Here, α-synuclein conformers are characterized by analysis of the charge-state distributions observed in electrospray-ionization mass spectrometry under negative-ion mode. It is found that, even at neutral pH, a small fraction of the molecular population is in a compact conformation. Several distinct partially folded forms are then identified under conditions that promote α-synuclein aggregation, such as solutions of simple and fluorinated alcohols. Specific intermediates accumulate at increasing concentrations of ethanol, hexafluoro-2-propanol, and trifluoroethanol. Finally, extensive folding induced by Cu(2+) binding is revealed by titrations in the presence of Cu(2+)-glycine. The data confirm the existence of a single, high-affinity binding site for Cu(2+). Because accumulation of this partially folded form correlates with enhancement of fibrillation kinetics, it is likely to represent an amyloidogenic intermediate in α-synuclein conformational transitions.  相似文献   

18.
19.
《MABS-AUSTIN》2013,5(7):1233-1244
ABSTRACT

In recent years, capillary electrophoresis–sodium dodecyl sulfate (cSDS) has been widely used for high resolution separation and quantification of the fragments and aggregates of monoclonal antibodies (mAbs) to ensure the quality of mAb therapeutics. However, identification of the low-molecular-weight (LMW) and high-molecular-weight (HMW) species detected in cSDS electropherograms has been based primarily on the approximate MWs calculated from standard curves using known MW standards and correlations with fragments and aggregates identified by other methods. It is not easy to collect sufficient amounts of H/LMW species from cSDS for analysis by orthogonal methods and the direct coupling of cSDS with mass spectrometry (MS) is very difficult due to interference from SDS. In this study, we describe the precise identification of H/LMW species detected by cSDS using reversed-phase high performance liquid chromatography (RP-HPLC) coupled with top-down tandem MS analysis. The H/LMW species were first identified by on-line RP-HPLC MS analysis and the RP-HPLC fractions were then analyzed by cSDS to connect the identified H/LMW species with the peaks in the cSDS electropherogram. With this method, 58 unique H/LMW species were identified from an immunoglobulin G1 (IgG1) mAb. The identified fragments ranged from 10 kDa single chain fragments to 130 kDa triple chain fragments, including some with post-translational modifications. This is the first study to clearly identify the antibody fragments, including the exact clipping sites, observed in cSDS electropherograms. The methodology and results presented here should be applicable to most other IgG1 mAbs.  相似文献   

20.
It was reported that bovine α-lactalbumin (BLA) as an important whey protein can be utilized as valuable vehicle for metal ions. The goal of this study was to investigate the interaction of BLA with bisdemethoxycurcumin (BDMC), Diacetylcurcumin (DAC), and diacetylbisdemethoxycurcumin (DABC) as three bioactive compounds by fluorescence quenching measurements and docking studies. It was observed that these ligands come closer to tryptophan residues and quench their emission without any change in their micro region polarity. The Stern–Volmer equation which is the best model to provide information about the interaction between small bioactive molecules and proteins was used to obtain the binding constants and the binding stoichiometry. Information about the extent of resonance energy transfer and Förster’s distance between donor and acceptor was estimated. Thermodynamic parameters confirmed that the final BDMC–BLA complex was stabilized by hydrogen bonds, whereas the final DABC–BLA and DAC–BLA complexes were stabilized by hydrophobic bonds which are in accordance with their chemical structures. Both the synchronous and docking studies verified that theTrp-26 which is the most exposed Tryptophan residue has the most contribution in the binding process. The Förster’s distances between bound ligands and tryptophans were in agreement with the measured distances by docking studies. The obtained achievements confirmed that there are considerable binding interactions between these curcuminoids and BLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号