首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钛及钛合金由于其优良的抗腐蚀性、生物相容性、低密度和高强度等特点,已广泛应用于承力部位的骨修复,但是如何促进 植入体与骨组织界面的有效结合仍是技术瓶颈,一方面由于植入体的弹性模量与骨组织不匹配,由此产生的应力屏蔽易导致植 入体松动,另一方面植入体缺乏骨诱导作用,导致材料骨界面之间不能形成有效的生物化学结合。近来,具有表面优化处理的新 型生物医用多孔钛材料通过引入孔隙的方法,使其与骨组织的力学性能相匹配,并且应用活化改性技术,使其具有生物活性,成 为目前骨替代材料的研究热点和发展方向。本文简要总结了多孔钛材料在力学性能、生物相容性、制备方法和表面改性等方面的 研究进展,强调在保证其多孔优势性能的前提下,通过生物活性因子的引入,进一步改善其生物相容性,提高结合力,延长植入体 的寿命,使其具有诱导成骨功能,是新型多孔钛材料的发展趋势。  相似文献   

2.
New material ofSpeonesydrion iani, an Early Devonian dipnoan from New South Wales, has provided additional Information on the dentition and jaws. Two new partial palates have been found, and X-rays of the parasphenoid shows that the structure is well preserved. The palatal teeth are well worn even in partly grown material, and they do not originate at a growth point, but at a thickening of the palate. More mandibles have been collected, and thin sections have been prepared to allow a discussion of their histology. On the mandible the teeth are clear, and they are much more defined than they are on the palate. The dental heel is variably developed, and grows in phases by thickening of the dentine at the contact with the bone. Dentine forms on the bone at the base of the heel, partly by Solution of the bone and the addition of dentine from the pulp canals, but also by direct growth from the pulp canals dorsal to the bone. In the latter case the dentine and bone are in contact, and the two tissues intermingle. The teeth are also formed on a thickened bone and consist of dentine capped with enamel making a crest. Dentine and bone are related as in the heel. We conclude that the teeth inSpeonesydrion are not homologous with the teeth in other dipnoans, and are formed by a different process involving the aggregation of denticles.  相似文献   

3.
Generation of subject-specific finite element (FE) models from computed tomography (CT) datasets is of significance for application of the FE analysis to bone structures. A great challenge that remains is the automatic assignment of bone material properties from CT Hounsfield Units into finite element models. This paper proposes a new assignment approach, in which material properties are directly assigned to each integration point. Instead of modifying the dataset of FE models, the proposed approach divides the assignment procedure into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the file into ABAQUS via user subroutines. Its accuracy has been validated by assigning the density of a bone phantom into a FE model. The proposed approach has been applied to the FE model of a sheep tibia and its applicability tested on a variety of element types. The proposed assignment approach is simple and illustrative. It can be easily modified to fit users’ situations.  相似文献   

4.
The Theory of Critical Distances (TCD) is a method used to study the failure of material in situations where stress concentrations, such as holes and notches, are present. This method uses two material constants: a critical length and a critical stress. The elastic stress field close to the stress concentration is examined, applying a fracture criterion. The TCD has been applied to predict brittle fracture in various different materials and various types of notches but it has not previously been applied to bone. Since bone fails by brittle fracture with limited plasticity, it is expected that the TCD will be applicable. Experimental data were obtained from the literature on the effects of sharp notches and holes loaded in various ways (tension, torsion and bending). These tests were modelled using finite element analysis. It was found that the TCD could be successfully applied to predict the load required for brittle fracture as a function of the type and size of the stress concentration feature. The critical distance was found to be almost constant, about 0.3-0.4mm, for all types of bone studied: the critical stress was found to be related to the material's ultimate tensile strength by a constant factor of T=1.33. The results of this study will be of practical value in the assessment of stress concentration features introduced during surgery and of naturally occurring bone defects.  相似文献   

5.
Bone graft substitutes have become an essential component in a number of orthopedic applications. Autologous bone has long been the gold standard for bone void fillers. However, the limited supply and morbidity associated with using autologous graft material has led to the development of many different bone graft substitutes. Allogeneic demineralized bone matrix (DBM) has been used extensively to supplement autograft bone because of its inherent osteoconductive and osteoinductive properties. Synthetic and natural bone graft substitutes that do not contain growth factors are considered to be osteoconductive only. Bioactive glass has been shown to facilitate graft containment at the operative site as well as activate cellular osteogenesis. In the present study, we present the results of a comprehensive in vitro and in vivo characterization of a combination of allogeneic human bone and bioactive glass bone void filler, NanoFUSE® DBM. NanoFUSE® DBM is shown to be biocompatible in a number of different assays and has been cleared by the FDA for use in bone filling indications. Data are presented showing the ability of the material to support cell attachment and proliferation on the material thereby demonstrating the osteoconductive nature of the material. NanoFUSE® DBM was also shown to be osteoinductive in the mouse thigh muscle model. These data demonstrate that the DBM and bioactive glass combination, NanoFUSE® DBM, could be an effective bone graft substitute.  相似文献   

6.
The uneven distributed microstructure featured with plate-like spongy bone in woodpecker’s skull has been found to further help reduce the impact during woodpecker’s pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker’s (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW’s micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW’s trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW’s cranial bone compared with others. The nano-hardness of the GSW’s occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW’s skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.  相似文献   

7.
Prevention of brain injury in woodpeckers under high deceleration during the pecking process has been an intriguing biomechanical problem for a long time. Several studies have provided different explanations, but the function of the hyoid bone, one of the more interesting skeletal features of a woodpecker, still has not been fully explored. This paper studies the relationship between a woodpecker head’s response to impact and the hyoid bone. Based on micro-CT scanning images, the material point method (MPM) is employed to simulate woodpecker’s pecking process. The maximum shear stress in the brainstem (SSS) is adopted as an indicator of brain injury. The motion and deformation of the first cervical vertebra is found to be the main reason of the shear stress of the brain. Our study found that the existence of the hyoid bone reduces the SSS level, enhances the rigidity of the head, and suppresses the oscillation of the endoskeleton after impact. The mechanism is explained by a brief mechanical analysis while the influence of the material properties of the muscle is also discussed.  相似文献   

8.
The aim of this study is to evaluate a newly developed bone plate with low-stiffness material in terms of stress distribution. In this numerical study, 3D finite element models of the bone plate with low-stiffness material and traditional bone plates made of stainless steel and Ti alloy have been developed by using the ANSYS software. Stress analyses have been carried out for all three models under the same loading and boundary conditions. Compressive stresses occurring in the intact portion of the bone (tibia) and at the fractured interface at different stages of bone healing have been investigated for all three types of bone-plate systems. The results obtained have been compared and presented in graphs. It has been seen that the bone plate with low-stiffness material offers less stress-shielding to the bone, providing a higher compressive stress at the fractured interface to induce accelerated healing in comparison with Ti alloy and stainless-steel bone plate. In addition, the effects of low-stiffness materials with different Young's modulus on stress distribution at the fractured interface have been investigated in the newly developed bone-plate system. The results showed that when a certain value of Young's modulus of low-stiffness material is exceeded, increase in stiffness of the bone plate does not occur to a large extent and stress distributions and micro-motions at the fractured interface do not change considerably.  相似文献   

9.
报道了在甘肃省东乡县龙担地点发现的中国长鼻三趾马Hipparion(Proboscidipparion)sinense头骨化石。此前在早更新世龙担动物群中记述过的长鼻三趾马材料仅有一枚第三掌骨,头骨化石的发现不仅使该动物群的三趾马种级分类得到证实,同时扩大了对这个种头骨和牙齿特征的认识。由于最初建种的正型标本为老年个体,此后也未发现过中国长鼻三趾马的完好头骨化石,因此龙担的新材料将为该种的特征补充更多重要的信息,尤其是鼻切迹的构成。其鼻骨下部呈一细窄条状向前强烈延伸,组成鼻颌切迹下缘的后部,其前端尖,到达P2/P3界线水平,与前颌骨鼻突的末梢间有30mm的距离。这些特征的识别对判断长鼻三趾马的系统关系有重要意义。  相似文献   

10.
生物材料作为移植物已广泛应用于骨组织修复,在应用生物材料时需要考虑材料各个方面的性能,如生物兼容性、力学强度、可塑性等。材料的可降解性也是骨修复材料不得不考虑的方面。既往研究表明,生物材料可以通过物理、化学和生物三种方式进行降解。在材料的生物降解过程中,经细胞途径降解是其中重要的一环。这种降解途径主要是通过巨噬细胞、破骨细胞的生物学行为及其所分泌的生物活性氧、酶、酸性代谢物等作用机制进行。认识细胞作用对生物材料的降解有助于更好地理解细胞的生物学行为,精准设计、制造更合理的骨修复材料,既利于材料植入时的初始稳定,也可以符合材料降解与新骨形成的匹配,促进骨再生和骨修复。  相似文献   

11.
Hydroxyapatite cements have recently been employed as bone substitutes in craniofacial reconstruction. They are easily applied, nonresorbable, available in unlimited quantity, and eliminate donor-site morbidity. Norian CRS (craniofacial repair system) is a new carbonated calcium phosphate paste that is unique in that it more closely resembles bone than do traditional hydroxyapatite pastes. Norian is a low-order crystalline apatite soluble at a low pH, facilitating its resorption and replacement by host bone. The cement was first used for craniofacial surgery in North America at the Children's Hospital of Philadelphia. This report presents the authors' experience with this bone substitute in both pediatric and adult craniofacial reconstruction. Sixteen adult and pediatric patients underwent craniofacial reconstruction involving the use of carbonated calcium phosphate paste for correction of defects that required from 5 to 110 g of carbonated calcium phosphate paste (mean, 28.5 g). The patients were all followed for a minimum of 14 months. Minor complications included one case of infection and two cases involving cement microfragmentation. In the authors' experience, carbonated calcium phosphate paste has proved to be an excellent alloplastic material for osseous augmentation and reconstruction in the craniofacial skeleton. Few problems were encountered using this material; no significant morbidity was encountered. Although this material seems to be promising as a bone substitute, further follow-up will be necessary to evaluate its potential role in craniofacial surgery.  相似文献   

12.
Over the past decade chemical processing and engineering of musculoskeletal tissue (tendon and bone) has improved dramatically. The use of bone allograft and xenograft in reconstructive orthopedic and maxillofacial surgeries is increasing, yet severe complications can occur if the material is contaminated in any way. A novel tissue sterilization process, BioCleanse®, has been developed to clean and sterilize musculoskeletal tissue for implantation. The present study was designed to determine the effect of this novel cleaning process on the biomechanical properties of bovine cortical bone prior to implantation. The mechanical properties of treated bovine bone material were compared to human samples with respect to failure under compression, shear and three-point bending. The data demonstrate that bovine bone treated with the novel sterilization procedure has favorable biomechanical properties compared to that of human bone treated in a similar fashion.  相似文献   

13.
14.
The skeletons of birds are universally described as lightweight as a result of selection for minimizing the energy required for flight. From a functional perspective, the weight (mass) of an animal relative to its lift-generating surfaces is a key determinant of the metabolic cost of flight. The evolution of birds has been characterized by many weight-saving adaptations that are reflected in bone shape, many of which strengthen and stiffen the skeleton. Although largely unstudied in birds, the material properties of bone tissue can also contribute to bone strength and stiffness. In this study, I calculated the density of the cranium, humerus and femur in passerine birds, rodents and bats by measuring bone mass and volume using helium displacement. I found that, on average, these bones are densest in birds, followed closely by bats. As bone density increases, so do bone stiffness and strength. Both of these optimization criteria are used in the design of strong and stiff, but lightweight, manmade airframes. By analogy, increased bone density in birds and bats may reflect adaptations for maximizing bone strength and stiffness while minimizing bone mass and volume. These data suggest that both bone shape and the material properties of bone tissue have played important roles in the evolution of flight. They also reconcile the conundrum of how bird skeletons can appear to be thin and delicate, yet contribute just as much to total body mass as do the skeletons of terrestrial mammals.  相似文献   

15.
The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness–density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep–recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples (\(n = 19\)). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery’s nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep–recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening–softening behaviour with increasing stress.  相似文献   

16.
Despite invention of titanium and resorbable screws and plates, still, one of the main challenges in bone fixation is the search for an ideal osteosynthetic material. Biomechanical properties, biocompatibility, and also cost effectiveness and clinical practicability are factors for the selection of a particular material. A promising alternative seems to be screws and plates made of bone. Recently, xenogenic bone pins and screws have been invented for use in joint surgery.In this study, screws made of allogenic sheep and xenogenic human bone were analyzed in a vital and dynamic sheep-model and compared to conventional titanium screws over a standard period of bone healing of 56 days with a constant applied extrusion force. Biomechanical analysis and histomorphological evaluation were performed.After 56 days of insertion xenogenic screws made of human bone showed significantly larger distance of extrusion of on average 173.8 μm compared to allogenic screws made of sheep bone of on average 27.8 and 29.95 μm of the titanium control group. Severe resorption processes with connective tissue interposition were found in the histomorphological analysis of the xenogenic screws in contrast to new bone formation and centripetal vascularization of the allogenic bone screw, as well as in processes of incorporation of the titanium control group.The study showed allogenic cortical bone screws as a substantial alternative to titanium screws with good biomechanical properties. In contrast to other reports a different result was shown for the xenogenic bone screws. They showed insufficient holding strength with confirmative histomorphological signs of degradation and insufficient osseointegration. Before common clinical use of xenogenic osteosynthetic material, further evaluation should be performed.  相似文献   

17.
Disruption of the cooperative balance between osteoblasts and osteoclasts causes various bone disorders, some of which are because of abnormal osteoclast recruitment. Osteoporosis, one of the bone disorders, is not effectively treated by currently available medicines. In addition to the development of novel drugs for palliative treatment, the exploitation of novel compounds for preventive treatment is important in an aging society. Quercetin, a major flavonoid found in many fruits and vegetables, has been expected to inhibit cancer and prevent several diseases because of its anti-inflammatory and estrogenic functions. It has been reported that quercetin has the potential to reduce bone resorption, but the mechanism by which this compound affects the differentiation of osteoclasts remains unknown. Here, using a bone marrow cell-based in vitro osteoclast differentiation system from bone marrow cells, we found that the ability of quercetin to inhibit osteoclastogenesis was related to its estrogenic activity. The inhibition was partially blocked by a specific antagonist for the nuclear receptor estrogen receptor α, but a specific antagonist of the membrane-type receptor GPR30 completely ablated this inhibition. Furthermore, quercetin suppressed the transient increase of Akt phosphorylation induced by the stimulation of macrophage colony-stimulating factor and receptor activator of NF-κB ligand with no effect on MAPK phosphorylation, suggesting exquisite crosstalk between cytokine receptor and G-protein coupled receptor signaling. These results indicate the important role of GPR30 in osteoclast differentiation and provide new insights to the development of new treatments for osteoporosis.  相似文献   

18.
PURPOSE: In a meta-analysis of the literature we evaluated the present knowledge of the material properties of cortical and cancellous bone to answer the question whether the available data are sufficient to realize anisotropic finite element (FE)-models of the proximal femur. MATERIAL AND METHOD: All studies that met the following criteria were analyzed: Young's modulus, tensile, compressive and torsional strengths, Poisson's ratio, the shear modulus and the viscoelastic properties had to be determined experimentally. The experiments had to be carried out in a moist environment and at room temperature with freshly removed and untreated human cadaverous femurs. All material properties had to be determined in defined load directions (axial, transverse) and should have been correlated to apparent density (g/cm(3)), reflecting the individually variable and age-dependent changes of bone material properties. RESULTS: Differences in Young's modulus of cortical [cancellous] bone at a rate of between 33% (58%) (at low apparent density) and 62% (80%) (at high apparent density), are higher in the axial than in the transverse load direction. Similar results have been seen for the compressive strength of femoral bone. For the tensile and torsional strengths, Poisson's ratio and the shear modulus, only ultimate values have been found without a correlation to apparent density. For the viscoelastic behaviour of bone only data of cortical bone and in axial load direction have been described up to now. CONCLUSIONS: Anisotropic FE-models of the femur could be realized for most part with the summarized material properties of bone if characterized by apparent density and load directions. Because several mechanical properties have not been correlated to these main criteria, further experimental investigations will be necessary in future.  相似文献   

19.
The critical role of IL-34 in osteoclastogenesis   总被引:1,自引:0,他引:1  
It has been widely believed that the cytokines required for osteoclast formation are M-CSF (also known as CSF-1) and RANKL. Recently, a novel cytokine, designated IL-34, has been identified as another ligand of CSF1R. This study was to explore the biological function, specifically osteoclastogenesis and bone metabolism, of the new cytokine. We produced recombinant mouse IL-34 and found that together with RANKL it induces the formation of osteoclasts both from splenocytes as well as dose-dependently from bone marrow cells in mouse and these cells also revealed bone resorption activity. It also promotes osteoclast differentiation from human peripheral blood mononucleated cells. Finally, we show that systemic administration of IL-34 to mice increases the proportion of CD11b+ cells and reduces trabecular bone mass. Our data indicate that IL-34 is another important player in osteoclastogenesis and thus may have a role in bone diseases. Strategies of targeting CSF1/CSF1R have been developed and some of them are already in preclinical and clinical studies for treatment of inflammatory diseases. Our results strongly suggest the need to revisit these strategies as they may provide a new potential pharmaceutical target for the regulation of bone metabolism in addition to their role in the treatment of inflammatory diseases.  相似文献   

20.
In 1961, Evans and King documented the mechanical properties of trabecular bone from multiple locations in the proximal human femur. Since this time, many investigators have cataloged the distribution of trabecular bone material properties from multiple locations within the human skeleton to include femur, tibia, humerus, radius, vertebral bodies, and iliac crest. The results of these studies have revealed tremendous variations in material properties and anisotropy. These variations have been attributed to functional remodeling as dictated by Wolff's Law. Both linear and power functions have been found to explain the relationship between trabecular bone density and material properties. Recent studies have re-emphasized the need to accurately quantify trabecular bone architecture proposing several algorithms capable of determining the anisotropy, connectivity and morphology of the bone. These past studies, as well as continuing work, have significantly increased the accuracy of analytical and experimental models investigating bone, and bone/implant interfaces as well as enhanced our perspective towards understanding the factors which may influence bone formation or resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号