首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pigment cells of mammals are characterized by two different developmental origins: cells of the retinal pigment epithelium (RPE) originate from the optic cup of the developing forebrain, whereas melanocytes arise from the neural crest. The pigmentation gene tyrosinase is expressed in all pigment cells but differentially regulated in melanocytes and RPE. The tyrosinase promoter does not confer strong expression in pigment cells in vivo, while inclusion of a distal regulatory element at position -15 kb is necessary and sufficient to provide strong expression in melanocytes. Nevertheless, the regulatory elements responsible for correct spatial and temporal tyrosinase expression in the RPE remained unidentified so far. In this report, we show that a 186 kb BAC containing the tyrosinase gene provides transgene expression in both RPE and melanocytes indicating the presence of regulatory sequences required for expression in the RPE. A deletion analysis of the BAC was performed demonstrating that a RPE-regulatory element resides between -17 and -75 kb. Using multi-species comparative genomic analysis we identified three conserved sequences within this region. When tested in transgenic mice one of these sequences located at -47 kb targeted expression to the RPE. In addition, deletion of this regulatory element within a tyrosinase::lacZ BAC provided evidence that this sequence is not only sufficient but also required for correct spatial and temporal expression in the RPE. The identification of this novel element demonstrates that tyrosinase gene expression is controlled by separate distal regulatory sequences in melanocytes and RPE.  相似文献   

2.
In this study, we have addressed the impact of the mouse tyrosinase enhancer on regulated expression from the mouse tyrosinase promoter during embryonic development. Stable and transient transgenic experiments using the reporter gene lacZ reveal that (1) expression is detected in neural crest-derived melanoblasts from E11.5 onward, (2) the enhancer does not increase transgenic expression in optic cup-derived pigment cells of the retinal pigment epithelium (RPE), and (3) expression in the telencephalon is not any longer detected. The importance of the enhancer for expression in pigment cells of the eye was further investigated in adult mice using an attenuated diphtheria toxin A gene. This demonstrated that in presence of the enhancer the transgene expression is specifically targeted to neural crest-derived melanocytes of the choroid and not, or slightly, to the RPE. This suggests that tyrosinase is differentially regulated in the two pigment cell lineages, and that this promoter can be used to target expression preferentially to the neural crest-derived melanocyte lineage.  相似文献   

3.
The homeobox gene Hb9 is expressed selectively by motor neurons (MNs) in the developing CNS. Previous studies have identified a 9-kb 5' fragment of the mouse Hb9 gene that is sufficient to direct gene expression to spinal MNs in vivo. Here, we sought to identify more discrete MN-specifying elements, using homology searches between genomic sequences of evolutionarily distant species. Based on homology screening of the mouse and human Hb9 promoters, we identified a 3.6-kb Hb9 enhancer that proved sufficient to drive MN-specific lacZ expression. We then compared mouse, human, and pufferfish (Fugu rubripes) genomic sequences, and identified a conserved 438-bp sequence, consisting of noncontiguous 313-bp and 125-bp fragments, residing within the 3.6-kb Hb9 enhancer. The zebrafish (Danio rerio) Hb9 genomic region was then found to have two identical copies of the 125-bp sequence, but no counterpart for the 313-bp sequence. Transgenic analysis showed that the 125-bp alone was both necessary and sufficient to direct spinal MN-specific lacZ expression, whereas the 313-bp sequence had no such enhancer activity. Moreover, the 125-bp Hb9 enhancer was found to harbor two Hox/Pbx consensus-binding sequences, mutations of which completely disrupted thoracolumbar Hb9 expression. These data suggest that Hox/Pbx plays a critical role in the segmental specification of spinal MNs. Together, these results indicate that the molecular pathways regulating Hb9 expression are evolutionarily conserved, and that MN-specific gene expression may be directed and achieved using a small 125-bp 5' enhancer.  相似文献   

4.
Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.  相似文献   

5.
6.
To evaluate the etiologic role of ultraviolet (UV) radiation in acquired dermal melanocytosis (ADM), we investigated the effects of UVA and UVB irradiation on the development and differentiation of melanocytes in primary cultures of mouse neural crest cells (NCC) by counting the numbers of cells positive for KIT (the receptor for stem cell factor) and for the L ‐3,4‐dihydroxyphenylalanine (DOPA) oxidase reaction. No significant differences were found in the number of KIT‐ or DOPA‐positive cells between the UV‐irradiated cultures and the non‐irradiated cultures. We then examined the effects of UV light on KIT‐positive cell lines derived from mouse NCC cultures. Irradiation with UVA but not with UVB inhibited the tyrosinase activity in a tyrosinase‐positive cell line (NCCmelan5). Tyrosinase activity in the cells was markedly enhanced by treatment with α‐melanocyte‐stimulating hormone (α‐MSH), but that stimulation was inhibited by UVA or by UVB irradiation. Irradiation with UVA or UVB did not induce tyrosinase activity in a tyrosinase‐negative cell line (NCCmelb4). Levels of KIT expression in NCCmelan5 cells and in NCCmelb4 cells were significantly decreased after UV irradiation. Phosphorylation levels of extracellular signal‐regulated kinase 1/2 in cells stimulated with stem cell factor were also diminished after UV irradiation. These results suggest that UV irradiation does not stimulate but rather suppresses mouse NCC. Thus if UV irradiation is a causative factor for ADM lesions, it would not act directly on dermal melanocytes but may act in indirect manners, for instance, via the overproduction of melanogenic cytokines such as α‐MSH and/or endothelin‐1.  相似文献   

7.
Nitric oxide (NO) and α-melanocyte-stimulating hormone (α-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of α-MSH to stimulate α-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to α-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control cultures were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm2 of UVB; the UV + L-NAME group is the same as group UV but has the addition of 300 μM L-NAME (every 6 h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of α-MSH pathway on melanogenesis, the key gene and protein of the α-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance α-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete α-MSH to enhance the α-MSH pathway on melanogenesis. This process will be of considerable interest in future studies.  相似文献   

8.
Melanocytes are pigment‐producing cells generated from neural crest cells (NCCs) that delaminate from the dorsal neural tube. The widely accepted premise that NCCs migrating along the dorsolateral pathway are the main source of melanocytes in the skin was recently challenged by the finding that Schwann cell precursors are the major cellular source of melanocytes in the skin. Still, in a wide variety of vertebrate embryos, melanocytes are exclusively derived from NCCs. In this study, we show that a NCC population that is not derived from Sox1+ dorsal neuroepithelial cells but are derived from Sox1? cells differentiate into a significant population of melanocytes in the skin of mice. Later, these Sox1? cells clearly segregate from cells that originated from Sox1+ dorsal neuroepithelial cell‐derived NCCs. The possible derivation of Sox1? cells from epidermal cells also strengthens their non‐neuroepithelial origin.  相似文献   

9.
Yip1p and Yif1p are essential for transport from ER to Golgi stack during the early secretory pathway in budding yeast. Here, we report the identification and characterization of human Yif1. Sequence analysis revealed that human Yif1 (HsYif1), like most of the other YIP1 protein family members, contains multiple transmembrane segments. Double immunofluorescence study revealed co-distribution of HsYif1 with Golgi marker such as GS27. To delineate the function of HsYif1, we conducted a yeast two-hybrid assay and identified an interaction between human HsYif1 and HsYip1A, a homolog of yeast Yip1. In addition, our immunoprecipitation pull-down assay validates the interaction between HsYif1 and HsYip1A. Moreover, our immunofluorescence study demonstrates the co-distribution of HsYif1 and HsYip1A. Significantly, over-expression of mutant HsYip1A-lacked cytosolic region disrupts the localization of HsYif1 to the Golgi, suggesting that HsYip1A specifies the localization of HsYif1 to the Golgi. Therefore, we conclude that human Yip1A interacts with and determines the localization of HsYif1 to the Golgi apparatus.  相似文献   

10.
Cerebellar GABAergic interneurons and glia originate from progenitors that delaminate from the ventricular neuroepithelium and proliferate in the prospective white matter. Even though this population of progenitor cells is multipotent as a whole, clonal analysis indicates that different lineages are already separated during postnatal development and little is known about the mechanisms that regulate the specification and differentiation of these cerebellar types at earlier stages. Here, we investigate the role of Ascl1 in the development of inhibitory interneurons and glial cells in the cerebellum. This gene is expressed by maturing oligodendrocytes and GABAergic interneurons and is required for the production of appropriate quantities of these cells, which are severely reduced in Ascl1−/− mouse cerebella. Nevertheless, the two lineages are not related and the majority of oligodendrocytes populating the developing cerebellum actually derive from extracerebellar sources. Targeted electroporation of Ascl1-expression vectors to ventricular neuroepithelium progenitors enhances the production of interneurons and completely suppresses astrocytic differentiation, whereas loss of Ascl1 function has opposite effects on both cell types. Our results indicate that Ascl1 directs ventricular neuroepithelium progenitors towards inhibitory interneuron fate and restricts their ability to differentiate along the astroglial lineage.  相似文献   

11.
Ectodermal placodes, from which many cranial sense organs and ganglia develop, arise from a common placodal primordium defined by Six1 expression. Here, we analyse placodal Six1 induction in Xenopus using microinjections and tissue grafts. We show that placodal Six1 induction occurs during neural plate and neural fold stages. Grafts of anterior neural plate but not grafts of cranial dorsolateral endomesoderm induce Six1 ectopically in belly ectoderm, suggesting that only the neural plate is sufficient for inducing Six1 in ectoderm. However, extirpation of either anterior neural plate or of cranial dorsolateral endomesoderm abolishes placodal Six1 expression indicating that both tissues are required for its induction. Elevating BMP-levels blocks placodal Six1 induction, whereas ectopic sources of BMP inhibitors expand placodal Six1 expression without inducing Six1 ectopically. This suggests that BMP inhibition is necessary but needs to cooperate with additional factors for Six1 induction. We show that FGF8, which is expressed in the anterior neural plate, can strongly induce ectopic Six1 in ventral ectoderm when combined with BMP inhibitors. In contrast, FGF8 knockdown abolishes placodal Six1 expression. This suggests that FGF8 is necessary and together with BMP inhibitors sufficient to induce placodal Six1 expression in cranial ectoderm, implicating FGF8 as a central component in generic placode induction.  相似文献   

12.
13.
14.
15.
The SOD1-G93A transgenic mouse is a widely used ALS model, but the death of lower motor neurons is the hallmark. Here, we show that the SOD1-G93A transgene and HO-1 are preferentially over-expressed in the lumbar spinal cord, particularly in the activated astrocytes of the transgenic mice. We also show down-regulation of GLT-1 in spite of the proliferating astrocytes. However, GLT-1, SOD1-G93A transgene and HO-1 expression were not obviously changed in the motor cortex. Our data link spinal cord vulnerability to relatively decreased expression of GLT-1, and high expression of the transgene and HO-1 in astrocytes in SOD1-G93A transgenic mice.  相似文献   

16.
Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development.  相似文献   

17.
The product of the Msx1 gene is a potent inhibitor of muscle differentiation. Msx1 is expressed in muscle precursor cells of the limb bud that also express Pax3. It is thought that Msx1 may facilitate distal migration by delaying myogenesis in these cells. Despite the role played by Msx1 in inhibiting muscle differentiation, nothing is known of the mechanisms that support the expression of the Msx1 gene within limb bud muscle precursor cells. In the present study we have used a combination of comparative genomics, mouse transgenic analysis, in situ hybridisation and immunohistochemistry to identify a highly conserved and tissue-specific regulatory sub-domain within the previously characterised Msx1 gene proximal enhancer element that supports the expression of the Msx1 gene in Pax3-expressing mouse limb pre-muscle masses. Furthermore, using a combination of in situ hybridisation, in vivo ChIP assay and transgenic explant culture analysis we provide evidence that Msx1 expression in limb bud muscle precursor cells is dependent on the canonical Wnt/TCF signalling pathway that is important in muscle shape formation. The results of these studies provide evidence of a mechanistic link between the Wnt/TCF and the Msx1/Pax3/MyoD pathways within limb bud muscle precursor cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号