首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about how plants protect flowers—their reproductive organs—against florivory. Additionally, the induced floral defense system has been examined in only a few species. We tested the inducibility of putative floral defenses and investigated the relationship between natural florivory and the floral defenses of 12 naturally growing plant species. The relationships between florivory and four chemical traits (nitrogen, phosphorus, total phenolics, and condensed tannins) were investigated in 12 plant species. We also studied whether flowers induce changes in chemical defenses in response to artificial damage in 10 plant species. A higher concentration of floral nitrogen was associated with a decreasing frequency of florivore attacks. Among the four traits of the 10 plant species studied, no trait changed in response to the artificial damage. We suggest that induced defense systems may not be advantageous for flowers, although it is also possible that these species simply do not use induced defense in any of their plant parts.  相似文献   

2.
Species often interact indirectly with each other via their traits. There is increasing appreciation of trait‐mediated indirect effects linking multiple interactions. Flowers interact with both pollinators and floral herbivores, and the flower‐pollinator interaction may be modified by indirect effects of floral herbivores (i.e., florivores) on flower traits such as flower size attracting pollinators. To explore whether flower size affects the flower‐pollinator interaction, we used Eurya japonica flowers. We examined whether artificial florivory decreased fruit and seed production, and also whether flower size affected florivory and the number of floral visitors. The petal removal treatment (i.e., artificial florivory) showed approximately 50% reduction in both fruit and seed set in natural pollination but not in artificial pollination. Furthermore, flower size increased the number of floral visitors, although it did not affect the frequency of florivory. Our results demonstrate that petal removal indirectly decreased 75% of female reproductive output via decreased flower visits by pollinators and that flower size mediated indirect interactions between florivory and floral visitors.  相似文献   

3.
Edaphic factors can lead to differences in plant morphology and tissue chemistry. However, whether these differences result in altered plant–insect interactions for soil-generalist plants is less understood. We present evidence that soil chemistry can alter plant–insect interactions both directly, through chemical composition of plant tissue, and indirectly, through plant morphology, for serpentine-tolerant Mimulus guttatus (Phrymaceae). First, we scored floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, pollinator visitation and florivory of M. guttatus growing on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil on floral display traits and flower chemistry. And last, we observed arrays of field-collected inflorescences and potted plants to determine the effect of soil environment in the field on pollinator visitation and florivore damage, respectively. For both natural and experimental plants, serpentine soil caused reductions in floral display and directly altered flower tissue chemistry. Plants in natural serpentine populations received fewer pollinator visits and less damage by florivores relative to non-serpentine plants. In experimental arrays, soil environment did not influence pollinator visitation (though larger flowers were visited more frequently), but did alter florivore damage, with serpentine-grown plants receiving less damage. Our results demonstrate that the soil environment can directly and indirectly affect plant–mutualist and plant–antagonist interactions of serpentine-tolerant plants by altering flower chemistry and floral display.  相似文献   

4.
Many hypotheses suggest that pollinators act to maintain or change floral color morph frequencies in nature, although pollinator preferences do not always match color morph frequencies in the field. Therefore, non-pollinating agents may also be responsible for color morph frequencies. To test this hypothesis, we examined whether Raphanus sativus plants with white flowers received different amounts of florivory than plants with pink flowers, and whether florivores preferred one floral color over the other. We found that white-flowered plants received significantly more floral damage than pink-flowered plants in eight populations over 4 years in northern California. Both generalists and specialists on Brassicaceae preferred white petals in choice and short-term no choice tests. In performance tests, generalists gained more weight on white versus pink petals whereas specialists gained similar amounts of weight on pink and white morphs. Because our results suggest that florivores prefer and perform better on white versus pink flowers, these insects may have the opportunity to affect the frequency of color morphs in the field.  相似文献   

5.
McCall AC 《Oecologia》2008,155(4):729-737
While herbivory has traditionally been studied as damage to leaves, florivory – herbivory to flowers prior to seed set – can also have large effects on plant fitness. Florivory can decrease fitness directly, either through the destruction of gametes or through alterations to plant physiology during fruit set, and can also change the appearance of a flower, deterring pollinators and reducing seed set. In order to distinguish between these hypotheses, it is necessary to both damage flowers and add pollen in excess to study the effects of damage on pollen limitation. Very few studies have used this technique over the lifetime of a plant. Here I describe a series of experiments showing the effects of natural and artificial damage on reproductive success in the annual plant Nemophila menziesii (Hydrophyllaceae, sensu lato). I show that natural and artificial petal damage decreased radial symmetry relative to controls and that both types of damage deterred pollinator activity. Both naturally damaged flowers and artificially damaged flowers in the field set fewer fruit or seed relative to undamaged control flowers. Finally, in an experiment crossing artificial petal damage with pollen addition, petal damage alone over the lifetime of this plant decreased female fitness, but only after a threshold of damage was reached. The fitness effect appeared to be direct because there was no detectable effect of pollen addition on the relationship between florivory and fitness. This result implies that both damaged and undamaged plants show similar amounts of pollen limitation and suggests that pollinator-mediated effects contributed little to the negative effects of florivory on female fitness. Florivores may thus be an under-appreciated agent of selection in certain plants, although more experimental manipulation of florivory is needed to determine if it is important over a range of taxa.  相似文献   

6.
Andrew C. McCall 《Oikos》2006,112(3):660-666
Resistance to leaf herbivory is well-documented in plants. In contrast, resistance to herbivory in flowers has received very little attention, even though reproductive tissues are often essential for plant reproduction. Plants may protect reproductive tissues with a range of defenses from constitutive to induced, although ecological costs associated with constitutive defense or resistance are expected to be higher than costs associated with induced responses. Induced responses in flowers may be effective against floral herbivores while minimizing the negative impacts of resistance on pollinators. This study examines induced responses in Nemophila menziesii (Hydrophyllaceae), a plant that frequently receives high levels of floral herbivory. I report that natural caterpillar herbivory increased levels of resistance against caterpillars later in the season. Similarly, artificial clipping to flowers consistently reduced natural damage to flowers vs unclipped controls over two years. Neither whole-plant nor individual seed set was affected by the reduction of floral damage. Induced resistance in reproductive tissues may benefit plants that are exposed to both floral herbivory and pollinator activity and can be an important link between plant antagonists and plant mutualists.  相似文献   

7.
We tested whether selection by pollinators could explain the parapatric distribution of coastal red- and inland yellow-flowered races of Mimulus aurantiacus (Phrymaceae) by examining visitation to natural and experimental populations. As a first step in evaluating whether indirect selection might explain floral divergence, we also tested for local adaptation in early life stages using a reciprocal transplant experiment. Hummingbirds visited flowers of each race at similar rates in natural populations but showed strong (>95%) preference for red flowers in all habitats in experimental arrays. Hawkmoths demonstrated nearly exclusive (>99% of visits) preference for yellow flowers and only visited in inland regions. Strong preferences for alternative floral forms support a direct role for pollinators in floral divergence. Despite these preferences, measures of plant performance across environments showed that red-flowered plants consistently survived better, grew larger and received more overall pollinator visits than yellow-flowered plants. Unmeasured components of fitness may favour the yellow race in inland habitats. Alternatively, we document a marked recent increase in inland hummingbird density that may have caused a change in the selective environment, favouring the eastward advance of red-flowered plants.  相似文献   

8.
Florivory: the intersection of pollination and herbivory   总被引:3,自引:0,他引:3  
McCall AC  Irwin RE 《Ecology letters》2006,9(12):1351-1365
Plants interact with many visitors who consume a variety of plant tissues. While the consequences of herbivory to leaves and shoots are well known, the implications of florivory, the consumption of flowers prior to seed coat formation, have received less attention. Herbivory and florivory can yield different plant, population and community outcomes; thus, it is critical to distinguish between these two types of consumption. Here, we consider the ecological and evolutionary consequences of florivory. A growing number of studies recognize that florivory is common in natural systems and in some cases surpasses leaf herbivory in magnitude and impact. Florivores can affect male and female plant fitness via direct trophic effects and through altered pathways of species interactions. In particular, florivory can affect pollination and have consequences for plant mating and floral sexual system evolution. Plants are not defenceless against florivore damage. Concepts of resistance and tolerance can be applied to plant–florivore interactions. Moreover, extant theories of plant chemical defence, including optimal defence theory, growth rate hypothesis and growth differentiation–balance hypothesis, can be used to make testable predictions about when and how plants should defend flowers against florivores. The majority of the predictions remain untested, but they provide a theoretical foundation on which to base future experiments. The approaches to studying florivory that we outline may yield novel insights into floral and defence traits not illuminated by studies of pollination or herbivory alone.  相似文献   

9.
Kaoru Tsuji  Teiji Sota 《Oikos》2010,119(11):1848-1853
Male‐biased florivory is a prominent phenomenon in the interaction between plants and florivores, and is potentially related to the evolution of flower traits and sex expression; however, its adaptive significance is not well understood. We studied florivory in the geometrid moth Chloroclystis excisa utilizing flower buds of a sexually polymorphic shrub, Eurya japonica, to reveal relationships between flower sex and moth oviposition preference, moth larval performance, and plant phenolics composition. In the field, C. excisa exploited flower buds on male and hermaphrodite trees but never those on female trees. In the laboratory, moths showed a strong oviposition preference for male over female flower buds, and larvae did not survive on female buds. Mortality was caused solely by feeding on the calyx covering the female bud. Female calyces contained higher concentrations of total phenolics and condensed tannins than did male calyces. These results suggest that substantial sexual differences in defense against florivory may have evolved in association with the differentiation of flower sexes and that a strong preference for the weakly defended flower sex may have evolved in florivores as a counter‐adaptation.  相似文献   

10.
Florivores are antagonists that damage flowers, and have direct negative effects on flowering and pollination of the attacked plants. While florivory has mainly been studied for its consequences on seed production or siring success, little is known about its impact on mating systems. Damage to flowers can alter pollinator attraction to the plant and may therefore modify patterns of pollen transfer. However, the consequences of damage for mating systems can take two forms: a decrease in flower number reduces opportunities for intra-inflorescence pollen deposition (geitonogamy), which, in turn, may lead to a decrease in selfing; whereas a decrease in floral display may also reduce overall visitation and thus increase the chances of self-pollination via facilitated or autonomous autogamy. We investigated the effects of damage by a bud-clipping weevil ( Anthonomus signatus ) in Fragaria virginiana in an experimental setting mimicking natural conditions. We found that increased damage led to an increase in selfing, a result consistent with the increased autogamy pathway. We discuss the implications of this finding and evaluate the generality of florivore-mediated mating system expression.  相似文献   

11.
In addition to reducing fitness by consuming reproductive structures, florivores may also reduce plant fitness by altering interactions with pollinators. To date, the effects of florivore activity on the volatile profile of flowers and subsequent attractiveness to pollinators have not been extensively investigated. In this study, we had three specific objectives: to determine the impact of florivory by the parsnip webworm Depressaria pastinacella on the floral volatile profile of the wild parsnip Pastinaca sativa, to ascertain the mechanisms by which florivory changes the volatile profile, and to estimate the consequences of florivory on visitation by pollinators and eventual seed set. An overall indirect effect of webworms on seed set, that is, the effect of infestation on pollination success, was not detected. However, this overall lack of indirect effect masks the heterogeneity among individual plants. For seven of 14 plants examined, pollination success was altered by webworms, and in four of these plants the alteration in pollination success was consistent with webworm-altered visitation. Webworms significantly altered floral fragrance, in particular causing disproportionate increases in the emissions of octyl esters. Additionally, volatiles from webworm frass, which contains large amounts of the octyl ester metabolite n-octanol, may alter the floral fragrance in ways that change attractiveness of flowers to pollinators. This study suggests that the effects of florivores on plant fitness are not limited to the removal of floral units but may also involve alterations in floral volatile composition, through damage-induced release and detoxification of particular constituents, that affect visitation and pollination success. Handling Editor: Steve Johnson. An erratum to this article can be found at  相似文献   

12.
Flowers of dioecious plants have sexually dimorphic traits that may affect florivore performances, and florivores may have preferences to plant sex that are correlated with their performance on different plant sexes. We investigated the florivory on a polygamodioecious evergreen shrub Eurya japonica in Japan to reveal florivores and their feeding patterns involved in sexually biased florivory on E. japonica flowers. Flowers of E. japonica were infested by lepidopteran and dipteran larvae and hemipteran insects. Lepidopteran larvae were chewers, dipteran larvae were gall makers and hemipteran insects were suckers. Chewed flowers were most frequent among infested flowers. Of florivores, lepidopteran larvae, mostly of Geometridae, were the important florivore that damaged flowers by chewing. Florivores infested male flower buds more often than female flower buds, but only a geometrid larvae Chloroclystis excise, which exclusively uses flower buds, showed the biased infection on male flowers. Rearing experiments for two other geometrid moths which use both leaves and flowers showed that the preference and performance of Ourapteryx nivea that fed mainly leaves did not differ between the plant sexes, whereas the development of Alcis angulifera larvae which fed both leaves and flowers was slower when they fed female than male leaves and flower buds. In addition, A. angulifera larvae fed fewer flower buds on female than on male plants. These results show that the male‐biased florivory on E. japonica trees is attributed mainly to the specialist florivore and also feeding preference for male flowers in an opportunistic florivore that feed both leaves and flowers.  相似文献   

13.
1. It has become increasingly recognised that several herbivores switch from folivory (leaf‐feeding) to florivory (flower‐feeding) during larval development. Yet, it remains poorly understood which cues influence this behaviour, whether a switch to florivory is consistently shown on different hosts, and to what extent florivory could be hindered by plant traits. 2. Using the sawfly Athalia rosae and two Brassicaceae differing in architecture and surface structure, the cues that influence larval movement to the flowers were investigated. A broad set of behavioural assays was employed and physical and chemical plant traits potentially affecting the larvae were analysed. Furthermore, the consequences of folivory versus florivory on insect performance were studied. 3. The larvae preferred flowers over leaves. Consumption of particular flower parts correlated partly with measured plant traits such as glucosinolate distribution. Visual cues were of higher importance than volatile cues. The initial position of newly hatched larvae on plants influenced the probability of the larvae reaching the flowers during development. Trichomes and surface waxes hindered the larvae from moving upwards to the flowers. Larvae developed slower and gained less body mass when feeding on inflorescences of Brassica nigra than when feeding on leaves, in contrast to the patterns observed before on Sinapis alba, where florivory led to an improved performance. 4. This study demonstrates that florivory depends on various host plant traits. It reveals new insights into different parameters influencing this multifaceted phenomenon and into the expected impact on the ecology and fitness of both the attacking herbivores and the plants.  相似文献   

14.
Background and Aims Evolutionary transitions from outcrossing to self-fertilization are thought to occur because selfing provides reproductive assurance when pollinators or mates are scarce, but they could also occur via selection to reduce floral vulnerability to herbivores. This study investigated geographic covariation between floral morphology, fruit set, pollen limitation and florivory across the geographic range of Camissoniopsis cheiranthifolia, a Pacific coastal dune endemic that varies strikingly in flower size and mating system.Methods Fruit set was quantified in 75 populations, and in 41 of these floral herbivory by larvae of a specialized moth (Mompha sp.) that consumes anthers in developing buds was also quantified. Experimental pollen supplementation was performed to quantify pollen limitation in three large-flowered, outcrossing and two small-flowered, selfing populations. These parameters were also compared between large- and small-flowered phenotypes within three mixed populations.Key Results Fruit set was much lower in large-flowered populations, and also much lower among large- than small-flowered plants within populations. Pollen supplementation increased per flower seed production in large-flowered but not small-flowered populations, but fruit set was not pollen limited. Hence inadequate pollination cannot account for the low fruit set of large-flowered plants. Floral herbivory was much more frequent in large-flowered populations and correlated negatively with fruit set. However, florivores did not preferentially attack large-flowered plants in three large-flowered populations or in two of three mixed populations.Conclusions Selfing alleviated pollen limitation of seeds per fruit, but florivory better explains the marked variation in fruit set. Although florivory was more frequent in large-flowered populations, large-flowered individuals were not generally more vulnerable within populations. Rather than a causative selective factor, reduced florivory in small-flowered, selfing populations is probably an ecological consequence of mating system differentiation, with potentially significant effects on population demography and biotic interactions.  相似文献   

15.
Animals visit flowers to access resources and by moving pollen to conspecific individuals act as pollinators. While biotic pollinators can increase the seed set of plants, other flower visitors can reduce seed set directly by damaging vital reproductive organs and indirectly by affecting the way the plant interacts with subsequent flower visitors. It is, therefore, vital to understand the varied effects of all visitors and not only pollinators on plant fitness, including those visitors that are temporally or spatially rare. We document the first known case of flower visitation by small mammals to Crotalaria cunninghamii (Fabaceae), a plant species morphologically suited to bird pollination. During a rain‐driven resource pulse in the Simpson Desert in 2011, the rodents Mus musculus (Muridae) and Pseudomys hermannsburgensis (Muridae) visited flowers to remove nectar by puncturing the calyx. We investigated the effects of this novel interaction on the reproductive output of C. cunninghamii. Compared with another recent resource pulse in 2007, plants flowering during mammal visitation had five times as many inflorescences per plant, 90% more flowers per inflorescence, and two to three times more nectar per flower, but this nectar was 30% less sugar rich. Concurrently, rodent plagues were up to three times larger during this rain‐driven resource pulse than during a previous pulse in 2007. Up to 75% of flowers had evidence of small mammal florivory, but this was not necessarily destructive, as up to 90% of fruit had the remains of florivory. Through a series of exclusion experiments, we found that small mammal florivory did not directly reduce seed set. We conclude that rain‐driven resource pulses led to a unique combination of events that facilitated the novel florivory interaction. Our findings emphasize the dynamic nature of biotic interactions and the importance of testing the role of all visitors to pollination services.  相似文献   

16.
The hypothesis that flower maintenance requires resources that would be used to support other plant functions (i.e. a cost of floral maintenance) was tested by experimentally manipulating floral longevity. Plants of Clarkia tembloriensis, a species with pollination-induced flower senescence, received either early or late pollinations (long and short longevities, respectively). We examined the effect of this manipulation on (1) per-flower allocation to nectar production and (2) flower, fruit and seed production per plant under two levels of resource availability. The direct costs of floral longevity measured in terms of nectar sugar were high: flowers that were maintained 35% longer invested proportionately more in nectar sugar (30%). At the whole-plant level, a cost of floral longevity was manifested as reduced seed production, but the magnitude of this cost varied with resource level. While plants with longer-lived flowers showed a 12% reduction in seed production, those that experienced reduced resource levels via partial defoliation, showed a decrement in seed production that was almost three times larger (34%). These differences were not brought about by changes in the number of flowers and fruits, but by significant alterations in their sizes. A model that expresses the cost of flower maintenance as a trade-off between floral longevity and seed production shows that an optimal flower longevity is determined by both the rate of fitness accrual and the cost of floral maintenance.  相似文献   

17.
Galen C 《Oecologia》2005,144(1):80-87
According to the distraction hypothesis, extrafloral nectaries (EFN) evolved under selection to entice ants away from floral nectaries, reducing ant-mediated damage to flowers and/or interference with pollinators. Predator-satiation, through production of nectar in either surplus flowers or EFN, provides an alternative mechanism for reducing the impact of ants as flower visitors. I tested these two hypotheses by experimentally adding EFN to flowering plants of the alpine wildflower, Polemonium viscosum, and by surveying the relationship between ant visitation and nectary number in nature. Plants of P. viscosum lack EFN and experience flower damage by ants of Formica neorufibarbus gelida. Ant behavior was compared on plants with five flowers and three experimental EFN and on controls with equal floral display, but no EFN. Addition of EFN increased flower visitation by ants. The effect of EFN on flower visitation did not depend on proximity of EFN to flowers or attractiveness of EFN to ants. Findings suggest that ants perceived patch quality on a whole plant basis, rather than responding to EFN and flowers as distinct nectar patches. Ant visitation did not keep pace with nectary number in nature. The relationship between ant visitation and nectary number per plant was weak and shallow as predicted under satiation. Ant foraging choices on experimental inflorescences showed that ants bypass flowers avoided by earlier ants, enhancing probability of escape via satiation. Results do not support the idea that EFN evolve to reduce flower visitation by ants, but show instead that nectar in surplus flowers can satiate ants and reduce their negative impacts on flower function and integrity.  相似文献   

18.
1. Plants can induce a response when they are attacked by herbivores. Although the induction of responses by herbivory in both flowers and leaves is relatively well studied, whether florivory (feeding of flowers) can also induce responses in flowers and leaves is less well explored and there are still unanswered questions. These include whether plants exhibit different levels of induced responses depending on the length of exposure to the florivores. 2. To address this knowledge gap, this study used a tropical floriphilic katydid, Phaneroptera brevis, and its non‐native food plant, Lantana camara. Nursery experiments were performed in which dry matter content and anthocyanin concentration of the flower (corolla and stamens), leaf dry matter content, and leaf blade punch resistance were measured at three time phases before and after exposing the plant to the katydid individuals for 0–7 days. 3. It was demonstrated that increasing the length (days) of exposure to the katydid individual leads to higher levels of induced plant response (leaf blade punch resistance), but only in the leaves. It was also shown that higher levels of induced plant response owing to the increase in the length of exposure to the katydid individual was not observed beyond the first set of leaves developed after the exposure. 4. These results address the knowledge gap and show that plants can exhibit different levels of induced responses depending on the length of exposure to florivores. This study thus highlights the far‐reaching importance of florivory on plants.  相似文献   

19.
Floral herbivores and pollinators are major determinants of plant reproduction. Because interaction of floral herbivores and pollinators occurs when herbivores attack the flowers in the bud and flower stages and because the compensatory ability of plants is known to differ according to the timing of herbivory, the effects of herbivory may differ according to its timing. In this study, we investigated the effects of floral herbivory at different stages on fruit production and seed/ovule ratio at two sites of large populations of the perennial herb, Iris gracilipes for 2 years. Herbivory at the bud and fruit stages both tended to have negative effects on fruit production, but the former caused more severe damage. On the other hand, herbivory at the flower stage tended not to have negative effects on fruit production because the degree of flower loss was smaller in the flower stage. Although herbivory decreased fruit production, flowers did not compensate for the damage by increasing the seed/ovule ratio because reproduction of I. gracilipes was limited by pollen availability rather than resources. These results indicate that floral herbivory at different stages has different effects on plant reproduction.  相似文献   

20.
While a plant’s capacity to tolerate damage by herbivores can be studied as a single trait, it is important to recognize that tolerance is generally a result of the combined action of several different traits. Here, we report on a pair of experiments to identify mechanisms for tolerating floral herbivory in Solanum carolinense, an andromonoecious perennial herb that regularly suffers from high levels of florivory. We measured the effect of actual and simulated florivory on host-plant fitness and assessed which plant traits exhibited plasticity in response to florivory. In addition, for each of nine plant genets, we calculated tolerance indices and determined which traits were genetically correlated with tolerance. Traits that served to help S. carolinense tolerate florivory in terms of sexual reproduction included initiating more inflorescences, aborting fewer buds prior to anthesis and fewer ovaries after fertilization, and increasing the ratio of perfect:male flowers. In addition, the greater the levels of florivory, the more the plants allocated to root growth, which may promote tolerance through greater potential future reproduction. The plant population contained significant genetic variation for tolerance itself and for nearly all of the putative tolerance mechanisms, which suggests that S. carolinense has the potential to evolve greater tolerance through a variety of different routes in response to natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号