首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Recently, plant–pollinator networks have been found to be highly structured in a nested pattern in which specialists interact with generalist species. This structure is often assumed to be particular to mutualistic interactions in opposition to the compartmentalized pattern expected for antagonistic networks. We investigated the presence of asymmetric specialization in a data set assembled from the literature of 20 highly resolved plant–insect herbivore networks and compared them with 24 plant–pollinator networks. Our results indicate that these two types of networks differ, but not in the way it is generally assumed. Asymmetric specialization is present in plant–herbivore networks even if it appears less frequently than in plant–pollinator networks. Indeed, mean and median percentages of species showing asymmetric specialisation in herbivory webs are 33% and 14% respectively, compared to 57% and 60% in pollination webs. Furthermore, the amount of asymmetry is linked with species diversity and not to connectance in plant-pollinator networks whereas the opposite pattern is found in plant–herbivore networks. Our results offer promising perspectives for understanding both the mechanisms that structure ecological communities and their impact on community dynamics depending on the type of interaction.  相似文献   

5.
Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.  相似文献   

6.
In many insect host–parasitoid systems, both the host and its parasitoids forage on shared floral resources. As a result of insect behaviour, morphology and physiology, flower species may act selectively at different levels of such systems, e.g., between the trophic levels of hosts and parasitoids, between species within a guild, between sexes or individuals within a species or between life history traits within an individual. We asked if effects of selectivity are consistent across levels in the horse chestnut leafminer, Cameraria ohridella, and its parasitoid complex. Insects were exposed singly in no-choice feeding trials to twelve common flower species and their survival and reproduction were recorded. Only one of twelve flower species (Ranunculus acris) tended to selectively favour the longevity of leafminers, but not of parasitoids. No flower species were found to favour parasitoids only. Both trophic levels profited from feeding on Anthriscus sylvestris, however, parasitoids benefited up to eight times more than their hosts. No differences were found among the species of the parasitoid guild, but females lived significantly longer than males, and single individuals within species were able to exploit generally unfavourable flower species. Out of the seven flower species that increased the longevity of leafminer females, only Chaerophyllum hirsutum significantly enhanced the number of eggs laid. Fecundity was generally positively correlated with longevity of leafminer females, but two flower species (C. hirsutum, Taraxacum officinale) had an additional positive effect on fecundity. In conclusion, we demonstrated that flowers act differently on life history traits in a host–parasitoid system at a multitude of biological levels and that these effects are not always consistent across levels. Selective plant-derived resources can therefore modify herbivore–natural enemy interactions in ways that are more complex than currently appreciated.  相似文献   

7.
《Fungal biology》2021,125(12):1009-1016
Endophytic growth of arthropod pathogenic fungi can parasitize insect herbivores without causing damage to the crop. However, studies addressing this tritrophic interaction are absent. Here, the endophytic arthropod pathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordyciptaceae), the polyphagous two-spotted spider mite Tetranychus urticae Koch (Trombidiformes: Tetranychidae), and its preferred plant host Phaseolus vulgaris L. (Fabales: Fabaceae) were selected to study the multi-kingdom interactions among plants, arthropods, and entomopathogenic fungi. Real-Time PCR analysis of nine defense-related genes revealed that a broad range of plant defense mechanisms is activated in response to the endophytic growth of B. bassiana. Moreover, we studied the molecular mechanism adapted by the two-spotted spider mite that underlies resistance. The analysis of 41 detoxification genes revealed that relatively moderate, high, and few numbers of genes were changed in the adults, nymphs, and eggs stages of T. urticae, respectively, after inoculation on colonized tissues of P. vulgaris. The endophytic growth of B. bassiana can have a negative effect on the growth and performance of the pest, in a developmental stage-dependent manner, by priming plant defense pathways. In parallel, the herbivore induces a broad range of detoxification genes that could potentially be involved in adaptation to endophytically colonized plant tissues.  相似文献   

8.
Shine R  Thomas J 《Oecologia》2005,144(3):492-498
Adaptations of snakes to overpower and ingest relatively large prey have attracted considerable research, whereas lizards generally are regarded as unable to subdue or ingest such large prey items. Our data challenge this assumption. On morphological grounds, most lizards lack the highly kinetic skulls that facilitate prey ingestion in macrostomate snakes, but (1) are capable of reducing large items into ingestible-sized pieces, and (2) have much larger heads relative to body length than do snakes. Thus, maximum ingestible prey size might be as high in some lizards as in snakes. Also, the willingness of lizards to tackle very large prey items may have been underestimated. Captive hatchling scincid lizards (Bassiana duperreyi) offered crickets of a range of relative prey masses (RPMs) attacked (and sometimes consumed parts of) crickets as large as or larger than their own body mass. RPM affected foraging responses: larger crickets were less likely to be attacked (especially on the abdomen), more likely to be avoided, and less likely to provide significant nutritional benefit to the predator. Nonetheless, lizards successfully attacked and consumed most crickets ≤35% of the predator’s own body mass, representing RPM as high as for most prey taken by snakes. Thus, although lizards lack the impressive cranial kinesis or prey-subduction adaptations of snakes, at least some lizards are capable of overpowering and ingesting prey items as large as those consumed by snakes of similar body sizes.  相似文献   

9.
Structured host-choice and no-choice tests were conducted to help clarify the host plant interactions of an insect herbivore that is simultaneously seen as broadly polyphagous and pestiferous (in Africa) and host restricted/beneficial (in Australia). The research reported here involves specification of the host range of the invasive population of Scirtothrips aurantii found on Bryophyllum in Australia and included tests involving three separate lists of plant species considered to have the potential for thrips attack (plants of horticultural concern, native species at risk of attack and species listed for screening in the search for specialist B. delagoense biocontrol agents). This procedure was developed specifically to deal with the S. aurantii situation in Australia. Because the test species is already present in the field, the conclusions from the tests could be evaluated independently against field sampling results. Host testing revealed that the fundamental host range of the Bryophyllum population of S. aurantii includes Macadamia integrifolia, Mangifera indica and Kalanchoe blossfeldianna. However, the choice tests (involving B. delagoense) and a field survey of Man. indica demonstrated conclusively that the realised host range of S. aurantii in the field is restricted to Crassulaceae. We recommend that host testing of generalist insects not be discounted out of hand (for biological control) because of their perceived polyphagy. Any evidence of populations being strongly associated with the weed species of interest (through quantified host association studies in the native range) suggests further scrutiny of that population is warranted, by means of the host testing methods developed here and in conjunction with appropriate tests of the population’s species status.  相似文献   

10.
Optimal oviposition theory predicts a positive relationship between female preference for oviposition hosts and offspring performance. Interspecies effects on oviposition preference have been widely investigated, especially for herbivores. However, intraspecies variation, such as nitrogen content, might also influence female preference for oviposition hosts and subsequent offspring performance. To evaluate this possibility, we investigated the oviposition preference of a zoophytophagous omnivore and the development and survival of its nymphs on a single species of host plant that varied in nitrogen content. In choice and no‐choice experiments without prey, female omnivores were allowed to oviposit on plants that had been fertilized using 4 rates of nitrogen fertilizer (39, 78, 156, and 311 mg/L nitrogen) for 72 h. After 72 h, the most females were found on tomato plants receiving high concentrations of nitrogen fertilizer and more eggs were laid on those plants. First instar nymphs developed more rapidly on high‐nitrogen plants and third instar nymphs developed faster on low‐nitrogen plants. Plant nitrogen did not affect nymph survival to the adult stage, or the probability of survival over time. Although female omnivores did discriminate between potential oviposition hosts based on plant nitrogen, their choices did not significantly impact nymph development or survival. This is the first study to show that intraspecies variation in nitrogen content between plants affects the oviposition preference of female omnivores, but not offspring performance.  相似文献   

11.
Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.  相似文献   

12.
13.
Host feeding is the consumption of host tissue by the adult female parasitoid. We studied the function of destructive host feeding and its advantage over non‐destructive feeding on host‐derived honeydew in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We allowed parasitoids to oviposit until they attempted to host feed. We either prevented or allowed host feeding. Parasitoids had access to sucrose solution, with or without additional access to honeydew. Parasitoids that were allowed to host feed did not have a higher egg load 20 or 48 h after host feeding than parasitoids prevented from host feeding. Host feeding did not increase the number of eggs matured within these periods, nor did the time spent host feeding positively affect any of these response variables. On the other hand, the presence of honeydew did have a positive effect on egg load 20 and 48 h after host feeding compared with parasitoids deprived of honeydew. Parasitoids with access to honeydew matured more eggs within these periods than honeydew‐deprived parasitoids. Host feeding increased life expectancy, but this effect was nullified when honeydew was supplied after the host‐feeding attempt. In conclusion, feeding on honeydew could be an advantageous alternative to host feeding in terms of egg quantity and longevity. This applies especially to parasitoids exploiting Homoptera, because these parasitoids can obtain honeydew from the host itself. It is possible that destructive host feeding has evolved to enable females to sustain the production of high‐quality anhydropic eggs, which may be important in the parasitoid's natural environment. We argue that future studies should take natural alternative food sources into more consideration.  相似文献   

14.
The diel activity levels and spatial distribution of roach Rutilus rutilus differed markedly between two shallow lakes of different environmental state. The movements of roach (12–25 cm L T), with surgically implanted mini‐radio transmitters, were monitored regularly during several 48 h tracking sessions in a clearwater and in a turbid lake. In both lakes, the roach in general were most active during dawn and dusk and least active during the night. Activity level in midsummer was lowest around noon in the clear lake and high around noon in the turbid lake. In summer, roach in the clear lake stayed passively in a restricted area of water lilies during the day and moved into the central part of the lake during the night. In the turbid lake, roach were dispersed all over the lake during the day and moved close to the shoreline at night. Predator : prey fish ratios did not differ in the two lakes, however the observed behaviour of roach in the clearwater lake may be explained by a larger predation pressure from fish and birds, both being favoured in the clear water.  相似文献   

15.
Although insect herbivory can modify subsequent quantity and quality of their host plants, change in plant quantity following herbivory has received less attention than plant quality. In particular, little is known about how previous herbivore damage determines plant growth and biomass in an insect species-specific manner. We explored whether herbivore species-specific food demand influences plant growth and biomass. To do this, we conducted a series of experiments and field survey using two specialist butterflies, Sericinus montela and Atrophaneura alcinous, and their host plant, Aristolochia debilis. It is known that A. alcinous larva requires four times more food resources to fulfill its development than S. montela larva. Despite that A. alcinous larvae imposed greater damage on plants than S. montela larvae, plant growth did not differ due to herbivory by these species both in single and multiple herbivory events. On the other hand, total aboveground biomass of the plants was reduced more by A. alcinous than S. montela feeding regardless of the number of herbivory events. Feeding on plants with a history of previous herbivory neither decreased nor increased larval growth. Our results suggest that food demand of the two butterfly species determined subsequent plant biomass, although the plant response may depend on tolerance of the host plant (i.e., ability to compensate for herbivore damage). Such difference in the effects of different herbivore species on host plant biomass is more likely to occur than previously thought, because food demand differs in most herbivore species sharing a host plant.  相似文献   

16.
Group defense is a strategy widely employed by various species. We consider the effect of grouping on population persistence when animals join together in herds in order to provide a self-defense from predators. In literature, group defense is usually addressed in terms of individual behavioral responses. In this paper, we consider an alternative ‘mean-field’ approach which uses prey and predator densities as the dynamical variables. The model is essentially a predator–prey system but with an unconventional parametrization for the predation term. We discuss the outcomes of the ecosystem dynamics in terms of persistence and prey survival. In the spatially distributed model some specific spatio-temporal features are discovered.  相似文献   

17.
The recognition mechanism of DNA with small drugs/ligands is an important field of research from pharmacological point of view. Such studies are ample with DNAs extracted from animal cells, but are rare for those extracted from plant cells. However, such a study is strongly demanding for the formulation of pesticides and other agrochemicals. In this contribution, for the first time, we report the interaction of two well-known DNA binder ethidium bromide (EB) and Hoechst 33258 (H33258) with two genomic DNAs extracted from the leaves of Ricinus communis L. (castor bean) and Mangifera indica (mango) using steady-state and picosecond-resolved fluorescence spectroscopy. The purity of the extracted DNAs is confirmed from gel electrophoresis and optical absorption studies. As evidenced from the circular dichroism (CD) measurements the DNAs retain physiologically relevant B forms. The well-known DNA intercalator EB has been found to show an additional electrostatic mode of binding with the DNAs, which is not present in the conventional animal DNAs. The binding affinity of EB is found to be even weaker for the DNA extracted from M. indica compared to that in R. communis L. On the other hand, the binding affinity of H33258 with the plant DNAs is found to be comparable to that of animal DNAs. The difference in interaction could be rationalized from the possible differences in the base sequences.  相似文献   

18.
Palatability of parasitic plants may be influenced by their host species, because the parasites take up nutrients and secondary compounds from the hosts. If parasitic plants acquired the full spectrum of secondary compounds from their host, one would expect a correlation between host and parasite palatability. We examined the palatability of leaves of the root-hemiparasite Melampyrum arvense grown with different host plants and the palatability of these host plants for two generalist herbivores, the caterpillar of Spodoptera littoralis and the slug Arion lusitanicus. We used 19 species of host plants from 11 families that are known to contain a wide spectrum of anti-herbivore compounds. Growth of M. arvense was strongly influenced by the host species. The palatability of the individual host species for the two herbivores differed strongly. Both A. lusitanicus and S. littoralis discriminated also between hemiparasites grown with different host plants. There was no correlation between the palatability of a host species and that of the parasites grown on that host, i.e., hemiparasites grown on palatable host species were not more palatable than those grown on unpalatable hosts. We suggest an interacting pattern of specific effects of chemical anti-herbivore defences and indirect effects of the hosts on herbivores through effects on growth and tissue quality of the parasites.  相似文献   

19.
20.
Parasites can enhance their fitness by modifying the behavior of their hosts in ways that increase rates of production and transmission of parasite larvae. We used an antihelminthic drug to experimentally alter infections of lungworms (Rhabdias pseudosphaerocephala) in cane toads (Rhinella marina). We then compared subsequent behaviors of dewormed toads versus toads that retained infections. Both in the laboratory and in the field, the presence of parasites induced hosts to select higher body temperatures (thereby increasing rates of lungworm egg production), to defecate in moister sites, and to produce feces with higher moisture content (thereby enhancing survival of larvae shed in feces). Because those behavioral modifications enhance rather than decrease parasite fitness, they are likely to have arisen as adaptive manipulations of host behavior rather than as host adaptations to combat infection or as nonadaptive consequences of infection on host physiology. However, the mechanisms by which lungworms alter cane toad thermal preference and defecation are not known. Although many examples of host manipulation by parasites involve intermediate hosts facilitating their own demise, our findings indicate that manipulation of definitive hosts can be as subtle as when and where to defecate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号