首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alligatorweed, (Alternanthera philoxeroides (Mart.) Griseb.), an aquatic and wetland plant native to South America, is an aggressive weed in many parts of the world. Its ability to compete with other native plants and to impede waterways has made it a serious threat to aquatic ecosystems. Although biological control with insects has been fairly successful in aquatic habitats, there is a need for additional agents to manage the weed in upland sites. Accordingly, in a survey in Brazil in 1997 a fungus, Nimbya (=Alternaria) alternantherae (Holcomb and Antonopoulus) Simmons and Alcorn, was discovered and confirmed to be highly damaging to alligatorweed. Studies were conducted to determine the potential of this fungus for controlling this weed. Several isolates from Brazil, USA, and Puerto Rico were compared and no differences in virulence were observed, although a lower dew requirement was demonstrated for the Brazilian isolates. Conidia were more effective than mycelial suspension, and inoculum concentrations of 1×105 and 1×106 conidia per ml provided significant levels of control of the weed in greenhouse and field experiments, respectively. In a host-range study, N. alternantherae infected 6 plant species from a total of 42 species belonging to 23 families. N. alternantherae has the potential to be an effective mycoherbicide for alligatorweed.  相似文献   

2.
3.
Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS–rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed >?70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.  相似文献   

4.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

5.
Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.  相似文献   

6.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

7.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

8.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

9.
Native to Japan, Fallopia japonica, most frequently referred to as Japanese knotweed, is a highly problematic invasive weed, particularly in the UK and North America. During surveys for natural enemies of this plant in Japan, two species of Mycosphaerella were collected. One of these was identified as M. polygoni-cuspidati, and is redescribed and neotypified. Causing a damaging leaf spot disease of F. japonica throughout its natural range in Japan, it is absent from the host’s exotic range. The restriction of M. polygoni-cuspidati to F. japonica in its center of origin, together with its severe impact on host fitness, indicates that this is a coevolved natural enemy with high potential as a classical biological control agent for the long-term management of this ecologically and economically important weed. In the field, the fungus has a reduced life cycle, with only spermogonia and pseudothecia (ascomata) being formed. Ascospores are the primary source of infection, and studies show that the mycelium from in vitro cultures is also infective and hyphae penetrate mainly via the stomata. A further, undescribed species of Mycosphaerella co-occurs with M. polygoni-cuspidati, here proposed as the new species M. shimabarensis. Both species have been studied using cultural, morphological and molecular phylogenetic methods.  相似文献   

10.
To investigate the biocontrol effectiveness of the antibiotic producing bacterium, Pseudomonas aureofaciens 63–28 against the phytopathogen Rhizoctonia solani AG-4 on Petri plates and in soybean roots, growth response and induction of PR-proteins were estimated after inoculation with P. aureofaciens 63–28 (P), with R. solani AG-4 (R), or with P. aureofaciens 63–28 + R. solani AG-4 (P + R). P. aureofaciens 63–28 showed strong antifungal activity against R. solani AG-4 pathogens in Petri plates. Treatment with P. aureofaciens 63–28 alone increased the emergence rate, shoot fresh weight, shoot dry weight and root fresh weight at 7 days after inoculation, when compared to R. solani AG-4; P + R treatment showed similar effects. Peroxidase (POD) and β-1,3-glucanase activity of P. aureofaciens 63–28 treated roots increased by 41.1 and 49.9%, respectively, compared to control roots. POD was 26% greater in P + R treated roots than R. solani treated roots. Two POD isozymes (59 and 27 kDa) were strongly induced in P + R treated roots. The apparent molecular weight of chitinase from treated roots, as determined through SDS-PAGE separation and comparison with standards, was about 29 kDa. Five β-1,3-glucanase isozymes (80, 70, 50, 46 and 19 kDa) were observed in all treatments. These results suggest that inoculation of soybean plants with P. aureofaciens 63–28 elevates plant growth inhibition by R. solani AG-4 and activates PR-proteins, potentially through induction of systemic resistance mechanisms.  相似文献   

11.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

12.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

13.
Pinus taeda is one of the main timber trees in Brazil, occupying 1.8 million ha with an annual productivity of 25–30 m3 ha−1. Another important species is Araucaria angustifolia, belonging to the fragile Rainforest biome, which for decades has been a major source of timber in Brazil. Some diseases that affect the roots and/or the stem of these trees and cause “damping-off” of the seedlings, with economic and environmental losses for the forest sector, are caused by the plant pathogenic fungi Fusarium sp. or Armillaria sp. This research project intended to isolate actinobacteria from the Araucaria rhizosphere, which present an antagonistic effect against these fungi. After the selection of the best pathogen inhibitors, morphologic characteristics, enzyme production, and their effect on the growth of Pinus taeda were studied. The actinobacteria were tested for their antagonistic capacity against Fusarium sp. in Petri plates with PDA as substrate. The inhibition zone was measured after 3, 5, 7, and 10 days. Of all the isolates tested, only two of them maintained inhibition zones up to 4 mm for 10 days. The inhibition of Armillaria sp. was tested in liquid medium and also in Petri dishes through the evaluation of the number of the fungal rhizomorphs in dual culture with the actinobacteria. It was found that all five isolates were able to inhibit the rhizomorph production, with the best performance of the isolate A43, which was capable of inhibiting both fungi, Fusarium and Armillaria. In a greenhouse experiment, the effect of five isolates on the growth of Pinus taeda seedlings was tested. Plant height, stem diameter, root and shoot dry matter were determined. The Streptomyces isolate A43 doubled plant growth. These results may lead to the development of new technologies in the identification of still unknown bacterial metabolites and new management techniques to control forest plant diseases.  相似文献   

14.
A gene encoding the B subunit of the enterotoxigenic Escherichia coli heat-labile enterotoxin (LTB) was adapted to the optimized plant coding sequence, and fused to the endoplasmic reticulum retention signal SEKDEL in order to enhance its expression level and protein assembly in plants. The synthetic LTB (sLTB) gene was placed into a plant expression vector under the control of the CaMV 35S promoter, and subsequently introduced into the watercress (Nasturtium officinale L.) plant by the Agrobacterium-mediated transformation method. The integration of the sLTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The assembly of plant-produced LTB protein was detected by western blot analysis. The highest amount of LTB protein produced in transgenic watercress leaf tissue was approximately 1.3% of the total soluble plant protein. GM1-ganglioside enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is the receptor for biologically active LTB on the cell surface, suggesting that the plant-synthesized LTB subunits formed biologically active pentamers.  相似文献   

15.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.  相似文献   

16.
As a major contributor to the flower market, Gypsophila paniculata is an important target for the breeding of new varieties. However, gypsophila breeding is strongly hampered by the sterility of this species’ genotypes and the lack of a genetic-transformation procedure for this genus. Here we describe the establishment of a transformation procedure for gypsophila (Gypsophila paniculata L.) based on Agrobacterium inoculation of highly regenerative stem segments. The transformation procedure employs stem explants derived from GA3-pretreated mother plants and a two-step selection scheme. The GA3 treatment was crucial for obtaining high gene-transfer frequencies (75–90% GUS-expressing explants out of total inoculated explants), as shown using three different gypsophila varieties. An overall transformation efficiency of five GUS-expressing shoots per 100 stem explants was demonstrated for cv. Arbel. The applicability of the transformation system to gypsophila was further reinforced by the generation of transgenic plants expressing Agrobacterium rhizogenes rolC driven by a CaMV 35S promoter. Transgenic gypsophila plantlets exhibited extensive rooting and branching, traits that could be beneficial to the ornamental industry.  相似文献   

17.
Hybridization between alien and native species is biologically very important and could lead to genetic erosion of native taxa. Solidago × niederederi was discovered over a century ago in Austria and described by Khek as a natural hybrid between the alien (nowadays regarded also as invasive) S. canadensis and native S. virgaurea. Although interspecific hybridization in the genus Solidago is considered to be relatively common, hybrid nature of S. × niederederi has not been independently proven using molecular tools, to date. Because proper identification of the parentage for the hybrid Solidago individuals solely based on morphological features can be misleading, in this paper we report an additive polymorphism pattern expressed in the ITS sequences obtained from individuals representing S. × niederederi, and confirm the previous hypothesis that the parental species of this hybrid are S. canadensis and S. virgaurea. Additionally, based on variability at the cpDNA rpl32-trnL locus, we showed that in natural populations hybridization occurs in both directions.  相似文献   

18.
19.
An endophytic fungus, F-23, was isolated from the roots of Dendrobium officinale Kimura et Migo, an endangered Chinese medicinal plant. The sequence of the ITS region indicated that the isolate belongs to the genus Mycena. After 4 months of inoculation, the root systems of D. officinale that were inoculated with F-23 fungus were much larger than the control’s root systems. We also observed that the hyphae of F-23 penetrated the epidermal cells within the host’s roots and spread from cell to cell. A large number of pelotons existed in the root cortical cells of D. officinale inoculated with F-23 fungus. Intracellular hyphae crossing through the host walls were also observed using SEM (scanning electron microscopy). In contrast, light microscopy and SEM showed that the transverse sections of the roots of control plants remained uncolonized. Therefore, the F-23 fungus can form mycorrhizal associations with the roots of its host plant, D. officinale, and enhance the growth of seedlings and roots. In brief, Mycena sp. was identified and shown to be a mycorrhizal fungus of the epiphytic orchid, D. officinale. This might be of potential use to the mass cultivation of D. officinale under artificial conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号