首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the mechanisms of graft-versus-tumor (GVT) activity in the absence of graft-versus-host disease (GVHD) against a solid tumor, we established two allogeneic bone marrow transplantation models with a murine renal cell carcinoma (RENCA). The addition of 0.3 x 10(6) donor CD8(+) T cells to the allograft increased the survival of tumor-bearing mice without causing GVHD. The analysis of CD8(+) T cells deficient in cytotoxic molecules demonstrated that anti-RENCA activity is dependent on IFN-gamma and Fas ligand (FasL), but does not require soluble or membrane-bound TNF-alpha, perforin, or TRAIL. Recipients of IFN-gamma(-/-) CD8(+) T cells are unable to reject RENCA compared with recipients of wild-type CD8(+) T cells and, importantly, neither group develops severe GVHD. IFN-gamma(-/-) CD8(+) T cells derived from transplanted mice are less able to kill RENCA cells in vitro, while pretreatment of RENCA cells with IFN-gamma enhances class I and FasL expression and rescues the lytic capacity of IFN-gamma(-/-) CD8(+) T cells. These results demonstrate that the addition of low numbers of selected donor CD8(+) T cells to the allograft can mediate GVT activity without lethal GVHD against murine renal cell carcinoma, and this GVT activity is dependent on IFN-gamma and FasL.  相似文献   

2.
Immunoincompetence after allogeneic hematopoietic stem cell transplantation (HSCT) affects in particular the T-cell lineage and is associated with an increased risk for infections, graft failure and malignant relapse. To generate large numbers of T-cell precursors for adoptive therapy, we cultured mouse hematopoietic stem cells (HSCs) in vitro on OP9 mouse stromal cells expressing the Notch-1 ligand Delta-like-1 (OP9-DL1). We infused these cells, together with T-cell-depleted mouse bone marrow or purified HSCs, into lethally irradiated allogeneic recipients and determined their effect on T-cell reconstitution after transplantation. Recipients of OP9-DL1-derived T-cell precursors showed increased thymic cellularity and substantially improved donor T-cell chimerism (versus recipients of bone marrow or HSCs only). OP9-DL1-derived T-cell precursors gave rise to host-tolerant CD4+ and CD8+ populations with normal T-cell antigen receptor repertoires, cytokine secretion and proliferative responses to antigen. Administration of OP9-DL1-derived T-cell precursors increased resistance to infection with Listeria monocytogenes and mediated significant graft-versus-tumor (GVT) activity but not graft-versus-host disease (GVHD). We conclude that the adoptive transfer of OP9-DL1-derived T-cell precursors markedly enhances T-cell reconstitution after transplantation, resulting in GVT activity without GVHD.  相似文献   

3.
The remarkable activity of donor T cells against malignant cells in the context of an allogeneic haematopoietic stem-cell transplantation (HSCT) is arguably, at present, the most potent clinical immunotherapy for cancer. However, alloreactive donor T cells are also important effector cells in the development of graft-versus-host disease (GVHD), which is a potentially lethal complication for recipients of an allogeneic HSCT. Therefore, the separation of the GVHD and graft-versus-tumour (GVT) activity of donor T cells has become a topic of great interest for many investigators. Recent studies have shown that donor T cells make differential use of their cytolytic pathways in mediating GVHD and GVT effects. Therefore, the selective blockade or enhancement of cytolytic pathways provides an intriguing therapeutic opportunity to separate the desired GVT effect from the potentially devastating GVHD.  相似文献   

4.
Mature donor T cells cause graft-versus-host disease (GVHD), but they are also the main mediators of the beneficial graft-versus-tumor (GVT) activity of allogeneic bone marrow transplantation. Suppression of GVHD with maintenance of GVT activity is a desirable outcome for clinical transplantation. We have previously shown that donor-derived CD4+CD25+ regulatory T cells inhibit lethal GVHD after allogeneic bone marrow transplantation across major histocompatibility complex (MHC) class I and II barriers in mice. Here we demonstrate that in host mice with leukemia and lymphoma, CD4+CD25+ regulatory T cells suppress the early expansion of alloreactive donor T cells, their interleukin-2-receptor (IL-2R) alpha-chain expression and their capacity to induce GVHD without abrogating their GVT effector function, mediated primarily by the perforin lysis pathway. Thus, CD4+CD25+ T cells are potent regulatory cells that can separate GVHD from GVT activity mediated by conventional donor T cells.  相似文献   

5.
In haplo-identical hematopoietic transplantation, donor vs. recipient natural killer (NK) cell alloreactivity derives from a mismatch between donor NK clones bearing inhibitory killer cell Ig-like receptors (KIR) for self-HLA class I molecules and their HLA class I ligands (KIR ligands) on recipient cells. When faced with mismatched allogeneic targets, these NK clones sense the missing expression of self-HLA class I alleles and mediate alloreactions. KIR ligand mismatches in the GvH direction trigger donor vs. recipient NK cell alloreactions, which improve engraftment, do not cause GvHD and control relapse in AML patients . The mechanism whereby alloreactive NK cells exert their benefits in transplantation has been elucidated in mouse models. The infusion of alloreactive NK cells ablates (i) leukemic cells, (ii) recipient T cells that reject the graft and (iii) recipient DC that trigger GvHD, thus protecting from GvHD.  相似文献   

6.
Nonmyeloablative allogeneic stem cell transplantation (SCT) can induce remission in patients with renal cell carcinoma (RCC), but this graft-versus-tumor (GVT) effect is often accompanied by graft-versus-host disease (GVHD). Here, we evaluated minor histocompatibility antigen (MiHA)-specific T cell responses in two patients with metastatic RCC who were treated with reduced-intensity conditioning SCT followed by donor lymphocyte infusion (DLI). One patient had stable disease and emergence of SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of targeting SMCY-expressing RCC tumor cells. The second patient experienced partial regression of lung metastases from whom we isolated a MiHA-specific CTL clone with the capability of targeting RCC cell lines. Whole genome association scanning revealed that this CTL recognizes a novel HLA-B7-restricted MiHA, designated ZAPHIR, resulting from a polymorphism in the splice donor site of the ZNF419 gene. Tetramer analysis showed that emergence of ZAPHIR-specific CD8+ T cells in peripheral blood occurred in the absence of GVHD. Furthermore, the expression of ZAPHIR in solid tumor cell lines indicates the involvement of ZAPHIR-specific CD8+ T cell responses in selective GVT immunity. These findings illustrate that the ZNF419-encoded MiHA ZAPHIR is an attractive target for specific immunotherapy after allogeneic SCT.  相似文献   

7.
T cells play an essential role in driving humoral autoimmunity in lupus. Molecules such as TRAIL exhibit strong T cell modulatory effects and are up-regulated in lupus, raising the possibility that they may influence disease severity. To address this possibility, we examined the role of TRAIL expression on pathogenic T cells in an induced model of murine lupus, the parent-into-F(1) (P-->F(1)) model of chronic graft-vs-host disease (GVHD), using wild-type or TRAIL-deficient donor T cells. Results were compared with mice undergoing suppressive acute GVHD. Although chronic GVHD mice exhibited less donor T cell TRAIL up-regulation and IFN-alpha-inducible gene expression than acute GVHD mice, donor CD4(+) T cell TRAIL expression in chronic GVHD was essential for sustaining effector CD4(+) Th cell numbers, for sustaining help to B cells, and for more severe lupus-like renal disease development. Conversely, TRAIL expression on donor CD8(+) T cells had a milder, but significant down-regulatory effect on CTL effector function, affecting the perforin/granzyme pathway and not the Fas ligand pathway. These results indicate that, in this model, T cell-expressed TRAIL exacerbates lupus by the following: 1) positively regulating CD4(+) Th cell numbers, thereby sustaining T cell help for B cells, and 2) to a lesser degree by negatively regulating perforin-mediated CD8(+) CTL killing that could potentially eliminate activated autoreactive B cells.  相似文献   

8.
4-1BB is expressed on activated CD4(+) and CD8(+) T cells; its ligand, 4-1BB ligand is expressed on APCs. Despite expression on both T cell subpopulations, 4-1BB has been reported to predominantly affect CD8(+) T cell responses. By quantifying graft-vs-host disease alloresponses in vivo, we demonstrate that both CD4(+) and CD8(+) T cell-mediated alloresponses are regulated by 4-1BB/4-1BB ligand interactions to approximately the same extent. 4-1BB receptor-facilitated CD4(+) T cell-mediated alloresponses were partly CD28 independent. In two distinct marrow graft rejection systems, host CD8(+) and CD4(+) T cells each separately contributed to host anti-donor T cell-mediated allograft rejection. alpha 4-1BB mAb increased the graft-vs-leukemia effect of a suboptimal number of donor splenocytes given later post bone marrow transplantation by bolstering allogeneic responses resulting in leukemia elimination. In summary, 4-1BB ligation is a potent regulator of CD4(+) and CD8(+) T cell-mediated allogeneic responses in vivo. Modifying the ligation of 4-1BB represents a new approach to altering the graft-vs-host disease and graft-vs-leukemia effects of allogeneic T cells post bone marrow transplantation.  相似文献   

9.
TNF-related apoptosis-inducing ligand (TRAIL), a new member of TNF family, induces apoptotic cell death of various tumor cells. We recently showed that TRAIL mediates perforin- and Fas ligand (FasL)-independent cytotoxic activity of human CD4+ T cell clones. In the present study, we investigated the expression and function of TRAIL on murine lymphocytes by using newly generated anti-murine TRAIL mAbs. Although freshly isolated T, B, or NK cells did not express a detectable level of TRAIL on their surface, a remarkable level of TRAIL expression was induced preferentially on CD3- NK1.1+ NK cells after stimulation with IL-2 or IL-15. In contrast, TRAIL expression was not induced by IL-18, whereas it efficiently potentiated lymphokine-activated killer activity of NK cells. In addition to perforin inactivation and neutralization of FasL by anti-FasL mAb, neutralization of TRAIL by anti-TRAIL mAb was needed for the complete inhibition of IL-2- or IL-15-activated NK cell cytotoxicity against mouse fibrosarcoma L929 target cells, which were susceptible to both FasL and TRAIL. These results indicated preferential expression of TRAIL on IL-2- or IL-15-activated NK cells and its potential involvement in lymphokine-activated killer activity.  相似文献   

10.
Current advances and expectations in tumor immunology]   总被引:7,自引:0,他引:7  
K Takeda  K Okumura 《Human cell》2001,14(3):159-163
Natural killer (NK) cells and Interferon (IFN)-gamma have been implicated in immune surveillance against tumor. We demonstrated the critical role of perforin in NK cell-mediated cytotoxic activity and anti-tumor effect in IFN-gamma inducible IL-12. And, we recently reported that TRAIL is constitutively expressed on a substantial proportion of murine NK cells in the liver, and which is responsible for spontaneous cytotoxicity and the anti-metastatic activity against TRAIL-sensitive tumor cells along with perforin and Fas ligand. Interestingly, the TRAIL expression on liver NK cells appeared to be regulated by endogenously produced IFN-gamma. Consisting with this finding, IL-12 and NKT cell specific ligand, alpha-Galactosylceramide (alpha-GalCer), induced TRAIL-mediated cytotoxcity and anti-tumor effect, and which was mediated by TRAIL expressed on IFN-gamma-activated NK cells. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF family, which preferentially induces apoptotic cell death in various tumor cells in vitro. Preclinical studies in mice and nonhuman primates have shown that administration of recombinant soluble forms of TRAIL could suppress the growth of TRAIL-sensitive tumor xenografts with no apparent systemic toxicity. These studies suggested a potential utility of TRAIL as a cancer therapeutic, although TRAIL expression at protein levels and its physiological roles in tumor surveillance has remained unknown. Presented findings provide the first evidence for the physiological function of TRAIL as a tumor suppressor.  相似文献   

11.
TNF-related apoptosis-inducing ligand (TRAIL) has been identified as a member of the TNF family that induces apoptosis in a variety of tumor cells, but its physiological functions are largely unknown. In the present study, we examined the expression and function of TRAIL in human CD4+ T cell clones by utilizing newly established anti-human TRAIL mAbs. Human CD4+ T cell clones, HK12 and 4HM1, exhibited perforin-independent and Fas ligand (FasL)-independent cytotoxicity against certain target cells, including T lymphoma (Jurkat) and keratinocyte (HaCaT) cell lines, which are susceptible to TRAIL-mediated cytotoxicity. In contrast to FasL, the expression of which was inducible upon anti-CD3 stimulation, TRAIL was constitutively expressed on HK12 and 4HM1 cells, and no further increase was observed after anti-CD3 stimulation. Spontaneous cytotoxic activities of resting HK12 and 4HM1 cells against Jurkat and HaCaT cells were blocked by anti-TRAIL mAb but not by anti-FasL mAb, and bystander cytotoxic activities of anti-CD3-stimulated HK12 and 4HM1 cells were abolished by the combination of anti-TRAIL and anti-FasL mAbs. These results indicate a differential regulation of TRAIL and FasL expression on human CD4+ T cell clones and that TRAIL constitutes an additional pathway of T cell-mediated cytotoxicity.  相似文献   

12.
TRAIL is known to play a pivotal role in the inhibition of autoimmune disease. We previously demonstrated that administration of dendritic cells engineered to express TRAIL and myelin-oligodendrocyte glycoprotein reduced the severity of experimental autoimmune encephalomyelitis and suggested that CD4(+)CD25(+) regulatory T cells (Tregs) were involved in mediating this preventive effect. In the current study, we investigated the effect of TRAIL on Tregs, as well as conventional T cells, using TRAIL-deficient mice. Upon induction of experimental autoimmune encephalomyelitis, TRAIL-deficient mice showed more severe clinical symptoms, a greater frequency of IFN-γ-producing CD4(+) T (Th1) cells, and a lower frequency of CD4(+)Foxp3(+) Tregs than did wild-type mice. In vitro, conventional T cells stimulated by bone marrow-derived dendritic cells (BM-DCs) from TRAIL-deficient mice showed a greater magnitude of proliferation than did those stimulated by BM-DCs from wild-type mice. In contrast, TRAIL expressed on the stimulator BM-DCs enhanced the proliferative response of CD4(+)CD25(+) Tregs in the culture. The functional TRAILR, mouse death receptor 5 (mDR5), was expressed in conventional T cells and Tregs upon stimulation. In contrast, the decoy receptor, mDc-TRAILR1, was slightly expressed only on CD4(+)CD25(+) Tregs. Therefore, the distinct effects of TRAIL may be due to differences in the mDc-TRAILR1 expression or the signaling pathways downstream of mouse death receptor 5 between the two T cell subsets. Our data suggest that TRAIL suppresses autoimmunity by two mechanisms: the inhibition of Th1 cells and the promotion of Tregs.  相似文献   

13.
Rapamycin (sirolimus) inhibits graft-vs-host disease (GVHD) and polarizes T cells toward Th2 cytokine secretion after allogeneic bone marrow transplantation (BMT). Therefore, we reasoned that ex vivo rapamycin might enhance the generation of donor Th2 cells capable of preventing GVHD after fully MHC-disparate murine BMT. Using anti-CD3 and anti-CD28 costimulation, CD4+ Th2 cell expansion was preserved partially in high-dose rapamycin (10 microM; Th2.rapa cells). Th2.rapa cells secreted IL-4 yet had reduced IL-5, IL-10, and IL-13 secretion relative to control Th2 cells. BMT cohorts receiving wild-type (WT) Th2.rapa cells, but not Th2.rapa cells generated from IL-4-deficient (knockout) donors, had marked Th2 skewing post-BMT and greatly reduced donor anti-host T cell alloreactivity. Histologic studies demonstrated that Th2.rapa cell recipients had near complete abrogation of skin, liver, and gut GVHD. Overall survival in recipients of WT Th2.rapa cells, but not IL-4 knockout Th2.rapa cells, was constrained due to marked attenuation of an allogeneic graft-vs-tumor (GVT) effect against host-type breast cancer cells. Delay in Th2.rapa cell administration until day 4, 7, or 14 post-BMT enhanced GVT effects, moderated GVHD, and improved overall survival. Therefore, ex vivo rapamycin generates enhanced donor Th2 cells for attempts to balance GVHD and GVT effects.  相似文献   

14.

Background

Allogeneic bone marrow transplantation (allo-BMT) is a potentially curative therapy for a variety of hematologic diseases, but benefits, including graft-versus-tumor (GVT) activity are limited by graft-versus-host-disease (GVHD). Carcinoembryonic antigen related cell adhesion molecule 1 (Ceacam1) is a transmembrane glycoprotein found on epithelium, T cells, and many tumors. It regulates a variety of physiologic and pathological processes such as tumor biology, leukocyte activation, and energy homeostasis. Previous studies suggest that Ceacam1 negatively regulates inflammation in inflammatory bowel disease models.

Methods

We studied Ceacam1 as a regulator of GVHD and GVT after allogeneic bone marrow transplantation (allo-BMT) in mouse models. In vivo, Ceacam1−/− T cells caused increased GVHD mortality and GVHD of the colon, and greater numbers of donor T cells were positive for activation markers (CD25hi, CD62Llo). Additionally, Ceacam1−/− CD8 T cells had greater expression of the gut-trafficking integrin α4β7, though both CD4 and CD8 T cells were found increased numbers in the gut post-transplant. Ceacam1−/− recipients also experienced increased GVHD mortality and GVHD of the colon, and alloreactive T cells displayed increased activation. Additionally, Ceacam1−/− mice had increased mortality and decreased numbers of regenerating small intestinal crypts upon radiation exposure. Conversely, Ceacam1-overexpressing T cells caused attenuated target-organ and systemic GVHD, which correlated with decreased donor T cell numbers in target tissues, and mortality. Finally, graft-versus-tumor survival in a Ceacam1+ lymphoma model was improved in animals receiving Ceacam1−/− vs. control T cells.

Conclusions

We conclude that Ceacam1 regulates T cell activation, GVHD target organ damage, and numbers of donor T cells in lymphoid organs and GVHD target tissues. In recipients of allo-BMT, Ceacam1 may also regulate tissue radiosensitivity. Because of its expression on both the donor graft and host tissues, this suggests that targeting Ceacam1 may represent a potent strategy for the regulation of GVHD and GVT after allogeneic transplantation.  相似文献   

15.
Acute and chronic graft-versus-host disease (GVHD) remain the major complications limiting the efficacy of allogeneic hemopoietic stem cell transplantation. Chronic GVHD can evolve from acute GVHD, or in some cases may overlap with acute GVHD, but how acute GVHD evolves to chronic GVHD is unknown. In this study, in a classical CD8+ T cell-dependent mouse model, we found that pathogenic donor CD4+ T cells developed from engrafted hemopoietic stem cells (HSCs) in C57BL/6SJL(B6/SJL, H-2(b)) mice suffering from acute GVHD after receiving donor CD8+ T cells and HSCs from C3H.SW mice (H-2(b)). These CD4+ T cells were activated, infiltrated into GVHD target tissues, and produced high levels of IFN-gamma. These in vivo-generated CD4+ T cells caused lesions characteristic of chronic GVHD when adoptively transferred into secondary allogeneic recipients and also caused GVHD when administered into autologous C3H.SW recipients. The in vivo generation of pathogenic CD4+ T cells from engrafted donor HSCs was thymopoiesis dependent. Keratinocyte growth factor treatment improved the reconstitution of recipient thymic dendritic cells in CD8+ T cell-repleted allogeneic hemopoietic stem cell transplantation and prevented the development of pathogenic donor CD4+ T cells. These results suggest that de novo-generated donor CD4+ T cells, arising during acute graft-versus-host reactions, are key contributors to the evolution from acute to chronic GVHD. Preventing or limiting thymic damage may directly ameliorate chronic GVHD.  相似文献   

16.
Persistent complete donor chimerism is an important clinical indicator for remissions of hematological malignancies after HLA-matched allogeneic stem cell transplantation (SCT). However, the mechanisms mediating the persistence of complete donor chimerism are poorly understood. The frequent coincidence of complete donor chimerism with graft-versus-leukemia effects and graft-versus-host disease suggests that immune responses against minor histocompatibility antigens (mHags) are playing an important role in suppressing the host hematopoiesis after allogeneic SCT. Here, we investigated a possible relationship between donor immune responses against the hematopoiesis-restricted mHag HA-1 and the long-term kinetics of host hematopoietic chimerism in a cohort of 10 patients after allogeneic HLA-matched, HA-1 mismatched SCT. Functional HA-1 specific CTLs (HA-1 CTLs) were detectable in 6/10 patients lysing host-type hematopoietic cells in vitro. Presence of HA-1 CTLs in the peripheral blood coincided with low host hematopoiesis levels quantified by highly sensitive mHag specific PCR. Additionally, co-incubation of host type CD34+ cells with HA-1 CTLs isolated after allogeneic SCT prevented progenitor and cobblestone area forming cell growth in vitro and human hematopoietic engraftment in immunodeficient mice. Conversely, absence or loss of HA-1 CTLs mostly coincided with high host hematopoiesis levels and/or relapse. In summary, in this first study, presence of HA-1 CTLs paralleled low host hematopoiesis levels. This coincidence might be supported by the capacity of HA-1 CTLs isolated after allogeneic SCT to specifically eliminate host type hematopoietic stem/progenitor cells. Additional studies involving multiple mismatched mHags in more patients are required to confirm this novel characteristic of mHag CTLs as factor for the persistence of complete donor chimerism and leukemia remission after allogeneic SCT.  相似文献   

17.
Natural killer (NK) cells are a population of innate type I lymphoid cells essential for early anti-viral responses and are known to modulate the course of humoral and cellular-mediated T cell responses. We assessed the role of NK cells in allogeneic CD8 T cell-mediated responses in an immunocompetent mouse model across an MHC class I histocompatibility barrier to determine its impact in therapeutic clinical interventions with polyclonal or monoclonal antibodies (mAbs) targeting lymphoid cells in transplantation. The administration of an NK cell depleting antibody to either CD8 T cell replete or CD8 T cell-depleted naïve C57BL/6 immunocompetent mice accelerated graft rejection. This accelerated rejection response was associated with an in vivo increased cytotoxic activity of CD8 T cells against bm1 allogeneic hematopoietic cells and bm1 skin allografts. These findings show that NK cells were implicated in the control host anti-donor cytotoxic responses, likely by competing for common cell growth factors in both CD8 T cell replete and CD8 T cell-depleted mice, the latter reconstituting in response to lymphopenia. Our data calls for precaution in solid organ transplantation under tolerogenic protocols involving extensive depletion of lymphocytes. These pharmacological biologics with depleting properties over NK cells may accelerate graft rejection and promote aggressive CD8 T cell cytotoxic alloresponses refractory to current immunosuppression.  相似文献   

18.
Acute graft-versus-host disease (aGvHD) is the most common complication of allogeneic hematopoietic stem cell transplantation (HSCT), which is often accompanied by impaired hematopoietic reconstitution. Sinusoidal endothelial cells (SECs) constitute bone marrow (BM) vascular niche that plays an important role in supporting self-renewal capacity and maintaining the stability of HSC pool. Here we provide evidences that vascular niche is a target of aGvHD in a major histocompatibility complex (MHC)–haploidentical matched murine HSCT model. The results demonstrated that hematopoietic cells derived from GvHD mice had the capacity to reconstitute hematopoiesis in healthy recipient mice. However, hematopoietic cells from healthy donor mice failed to reconstitute hematopoiesis in GvHD recipient mice, indicating that the BM niche was impaired by aGvHD in this model. We further demonstrated that SECs were markedly reduced in the BM of aGvHD mice. High level of Fas and caspase-3 expression and high rate of apoptosis were identified in SECs, indicating that SECs were destroyed by aGvHD in this murine HSCT model. Furthermore, high Fas ligand expression on engrafted donor CD4+, but not CD8+ T cells, and high level MHC-II but not MHC-I expression on SECs, suggested that SECs apoptosis was mediated by CD4+ donor T cells through the Fas/FasL pathway.  相似文献   

19.
Allogeneic hematopoietic stem cell transplantation represents the only curative approach for many hematological malignancies. During the last years the impact of the conditioning regimen has been re-assessed. With the advent of reduced-intensity conditioning the paradigm has changed from cytoreduction executed by high-dose radio-chemotherapy to immunological surveillance of leukemia by donor cells. Distinct subsets of T cells and NK cells contribute to graft-versus-leukemia reactions. So far, cytotoxic T lymphocytes are the mainstay of allogeneic immunotherapy. Here, we summarise the current knowledge of T cell-mediated graft-versus-leukemia reactions and present results from pre-clinical and clinical studies of T cell-based adoptive immunotherapy. We address the issues of feasibility and specificity of adoptive immunotransfer from a clinical point of view and discuss the prerequisites for successful clinical applications. Finally, the prospects for immunological research that have evolved with the increasing use of reduced-intensity conditioning and allogeneic stem cell transplantation are highlighted.  相似文献   

20.
Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in patients treated with allogeneic hematopoietic stem cell transplantation (HSCT). Posttransplant immunosuppressive drugs incompletely control GVHD and increase susceptibility to opportunistic infections. In this study, we used flagellin, a TLR5 agonist protein (~50 kDa) extracted from bacterial flagella, as a novel experimental treatment strategy to reduce both acute and chronic GVHD in allogeneic HSCT recipients. On the basis of the radioprotective effects of flagellin, we hypothesized that flagellin could ameliorate GVHD in lethally irradiated murine models of allogeneic HSCT. Two doses of highly purified flagellin (administered 3 h before irradiation and 24 h after HSCT) reduced GVHD and led to better survival in both H-2(b) → CB6F1 and H-2(K) → B6 allogeneic HSCT models while preserving >99% donor T cell chimerism. Flagellin treatment preserved long-term posttransplant immune reconstitution characterized by more donor thymic-derived CD4(+)CD25(+)Foxp3(+) regulatory T cells and significantly enhanced antiviral immunity after murine CMV infection. The proliferation index and activation status of donor spleen-derived T cells and serum concentration of proinflammatory cytokines in flagellin-treated recipients were reduced significantly within 4 d posttransplant compared with those of the PBS-treated control recipients. Allogeneic transplantation of radiation chimeras previously engrafted with TLR5 knockout hematopoietic cells showed that interactions between flagellin and TLR5 expressed on both donor hematopoietic and host nonhematopoietic cells were required to reduce GVHD. Thus, the peritransplant administration of flagellin is a novel therapeutic approach to control GVHD while preserving posttransplant donor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号