首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang Q  Li N  Wang X  Shen J  Hong X  Yu H  Zhang Y  Wan T  Zhang L  Wang J  Cao X 《Life sciences》2007,80(5):420-429
We report here the molecular cloning and characterization of a novel human gene (hMYADM) derived from a human bone marrow stromal cell (BMSC) cDNA library, which shares high homology with mouse myeloid-associated differentiation marker (MYADM). hMYADM is also closely related to many other eukaryotic proteins, which together form a novel and highly conserved MYADM-like family. hMYADM with 322-residue protein contains eight putative transmembrane segments and confocal microscopic analysis confirmed its membrane localization by using anti-hMYADM monoclonal antibody. hMYADM mRNA was selectively expressed in human monocytes, dendritic cells, promyeloid or monocytic leukemia cell lines, but not in CD4+, CD8+, CD19+ cells, nor in T cell leukemia or lymphocytic leukemia cell lines. hMYADM expression was also found in normal human bone marrow enriched for CD34+ stem cells, and the expression was up-regulated when these cells were induced to differentiate toward myeloid cells. The mRNA expression level of hMYADM significantly increased in acute promyelocytic leukemia HL-60 and chronic myelogenous leukemia K562 cell line after phorbol myristate acetate (PMA)-induced differentiation. Our study suggests that hMYADM is selectively expressed in myeloid cells, and involved in the myeloid differentiation process, indicating that hMYADM may be one useful membrane marker to monitor stem cell differentiation or myeloid leukemia differentiation.  相似文献   

2.
Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, assembly and transport, and which play critical roles in the regulation of cell growth, survival and differentiation. We set out to test the hypothesis that HSP27 protein is expressed in the human testes and its expression varies with the state of spermatogenesis. HSP27 expression was examined in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) using immunofluorescent methods. The biopsies were obtained from patients undergoing investigations for infertility. The seminiferous epithelium of the human testes showing normal spermatogenesis had a cell type-specific expression of HSP27. HSP27 expression was strong in the cytoplasm of the Sertoli cells, spermatogonia, and Leydig cells. Alternatively, the expression was moderate in the spermatocytes, weak in the spermatids and absent in the spermatozoa. In testes showing maturation arrest, HSP27 expression was strong in the Sertoli cells, weak in the spermatogonia, and spermatocytes. It was absent in the spermatids and Leydig cells. In Sertoli cell only syndrome, HSP27 expression was strong in the Sertoli cells and absent in the Leydig cells. We report for the first time the expression patterns of HSP27 in the human testes and show differential expression during normal spermatogenesis, indicating a possible role in this process. The altered expression of this protein in testes showing abnormal spermatogenesis may be related to the pathogenesis of male infertility.  相似文献   

3.
Apoptosis is considered an important mechanism of selective deletion that occurs during hematopoiesis. Myelolipoma is a rare benign tumor composed of adipose tissue and hematopoietic cells. The pathogenesis of this benign tumor is still unclear. Analysing the structural levels and apoptosis of normal human bone marrow (NHBM) and human myelolipoma (HM), the apoptotic events resulted abundantly present in NHBM compared to HM, which showed a small number of apoptotic cells. By contrast, Fas expression was strongly present both in NHBM and HM. These findings suggest that an altered function of Fas in myelolipoma is not able to trigger the apoptotic machinery. In conclusion, we hypothesize that drastic reduction of apoptosis in myelolipoma can be considered one of the growth regulatory mechanisms.  相似文献   

4.
HSP60, Bax, apoptosis and the heart   总被引:9,自引:0,他引:9  
HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria. It is now clear that a significant amount of HSP60 is also present in the extra-mitochondrial cytosol of many cells. In the heart, this cytosolic HSP60 complexes with Bax, Bak and Bcl-XL, but not with Bcl-2. Reduction in HSP60 expression precipitates apoptosis, but does not alter mitochondrial function. During hypoxia, HSP60 cellular distribution changes, with HSP60 leaving the cytosol, and translocating to the plasma membrane. Total cellular HSP60 does not change until 10 h of reoxygenation; however, release of cytochrome c from the mitochondria occurs prior to reoxygenation, coinciding with the redistribution of HSP60. The changes in HSP60, Bax and cytochrome c during hypoxia can be replicated by ATP depletion. HSP60 has also been shown to accelerate the cleavage of pro-caspase3. Thus, HSP60 has a complex role in apoptosis in the cell. Its binding to Bax under normal conditions suggests a key regulatory role in apoptosis.  相似文献   

5.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   

6.
60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis   总被引:12,自引:0,他引:12  
The aim of the present study was to evaluate the expression of the heat shock protein 60 (HSP60), a mitochondrial matrix-associated protein belonging to the chaperonin family, in colorectal adenomas and cancers, comparing them to normal colonic tissues and hyperplastic polyps. We performed both immunohistochemistry and Western blot analysis for HSP60. Immunohistochemistry resulted positive in all tubular adenomas and infiltrating adenocarcinomas. By contrast, normal tissues and hyperplastic polyps were negative. Quantitative analysis showed that tubular adenomas with different levels of dysplasia did not present statistical differences concerning HSP60 positivity. In addition, carcinomas always showed the highest expression. Western blot analysis confirmed these observations. These data suggest that HSP60 over-expression is an early event in carcinogenesis. We suspect that HSP60 plays a different role in colorectal carcinogenesis with respect to that in normal cells, which foresees its possible use as diagnostic and prognostic tools.  相似文献   

7.
Our objective was to determine the role that bone marrow-derived stromal cells have on human hematopoiesis in HIV infection. In particular, we dissected the heterogeneous bone marrow microenvironment to study the effect HIV expression might have on the cell population capable of producing the cytokines which will support human CD34+ cell differentiation. A stromal cell line, Lof(11-10), was established from human bone marrow by transfecting a plasmid containing the SV40 large T-antigen and isolating foci exhibiting a transformed phenotype. The Lof(11-10) cell line was characterized to determine its susceptibility to HIV infection, to identify its cytokine production profile, and to test the ability of conditioned media from this line to support CD34+ cell differentiation in the presence and absence of HIV expression. Nine cytokines were detected by RT-PCR and ELISA analysis. Conditioned media obtained from the Lof(11-10) cell line was able to support CD34+ cell differentiation. However, because the Lof(11-10) cells are not infectible by HIV, molecular clones of HIV were introduced into these cells by transfection. There was no qualitative difference in the levels of cytokine production between HIV-expressing and control Lof(11-10) cells. Furthermore, conditioned media derived from HIV-expressing and control Lof(11-10) cells added to bone marrow-derived CD34+ progenitor cells yielded similar colony formation in methylcellulose assays. Our data suggest that HIV infection of the cytokine-producing cells within the bone marrow microenvironment, as represented by the Lof(11-10) cell line, results in both normal cytokine production and hematopoiesis in spite of HIV expression. This report adds to the evidence against stromal cells being a significant target of HIV and establishes a system for comparison with more relevant models.  相似文献   

8.
Glucocorticoids have been shown to induce the differentiation of bone marrow stromal osteoprogenitor cells into osteoblasts and the mineralization of the matrix. Since the expression of bone matrix proteins is closely related to the differentiation status of osteoblasts and because matrix proteins may play important roles in the mineralization process, we investigated the effects of dexamethasone (Dex) on the expression of bone matrix proteins in cultured normal human bone marrow stromal cells (HBMSC). Treatment of HBMSC with Dex for 23 days resulted in a significant increase in alkaline phosphatase activity with maximum values attained on day 20 at which time the cell matrix was mineralized. Northern blot analysis revealed an increase in the steady-state mRNA level of alkaline phosphatase over 4 weeks of Dex exposure period. The observed increase in the alkaline phosphatase mRNA was effective at a Dex concentration as low as 10−10 M with maximum values achieved at 10−8 M. In contrast, Dex decreased the steady-state mRNA levels of both bone sialoprotein (BSP) and osteopontin (OPN) over a 4 week observation period when compared to the corresponding control values. The relative BSP and OPN mRNA levels among the Dex treated cultures, however, showed a steady increase after more than 1 week exposure. The expression of osteocalcin mRNA which was decreased after 1 day Dex exposure was undetectable 4 days later. Neither control nor Dex-treated HBMSC secreted osteocalcin into the conditioned media in the absence of 1,25(OH)2D3 during a 25-day observation period. The accumulated data indicate that Dex has profound and varied effects on the expression of matrix proteins produced by human bone marrow stromal cells. With the induced increment in alkaline phosphatase correlating with the mineralization effects of Dex, the observed concomitant decrease in osteopontin and bone sialoprotein mRNA levels and the associated decline of osteocalcin are consistent with the hypothesis that the regulation of the expression of these highly negatively charged proteins is essential in order to maximize the Dex-induced mineralization process conditioned by normal human bone marrow stromal osteoprogenitor cells. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Mesenchymal stem cells (MSCs) from bone marrow are suitable for the reconstruction of connective tissues and even brain tissue but have limitations in terms of cell expansion and fully specific differentiation. In our current study, we have attempted to adjust and improve the cell expansion and differentiation properties of human MSCs from different tissues. MSCs from normal bone marrow and Wharton jelly were subjected to proteomic differential displays, followed by functional adjustments based on these displays. Bone marrow MSCs expressed more transgelin-2 and differentiated more rapidly into bone nodules but showed a slower growth rate. A knockdown of transgelin-2 expression by specific small interfering RNA (siRNA) significantly increased the growth rate of these cells, the G1/S phase cell cycle transition, and the interaction of cyclin D1 with cdk2. Wharton jelly MSCs expressed the chaperone protein HSP90β at higher levels and differentiated slowly toward an osteogenic lineage. However, the knockdown of HSP90β expression significantly increased bone nodule formation, inhibited cell growth, decreased the number of cells in the G1/S phase of the cell cycle, and decreased the interaction of cyclin D1 with cdk2 and of cyclin E with cdk2. These results were validated by the in vivo repair of segmental bone defects in a mouse model with severe combined immunodeficiency. We thus demonstrate an improvement in the cell expansion and tissue regeneration properties of human MSCs through specific adjustments.  相似文献   

10.
11.
Specific antibodies to human glycophorin A and spectrin were used to study the expression of these membrane proteins in normal and pathologic human bone marrow. In immunofluorescence experiments spectrin and glycophorin A are found in 50–60% of the nucleated cells in normal bone marrow. These two proteins are expressed at all stages of red cell differentiation and can be traced at least to the earliest morphologically recognizable nucleated red cell precursor, the proerythroblast; the two proteins are specific for cells of the red cell series and are not found to be expressed in lymphocytic, granulocytic cells or platelets. These conclusions were drawn from studies on bone marrow in patients with a temporary block in erythropoiesis at the level of stem cells or of the pronormoblast. Bone marrow from these individuals either lacked all nucleated cells stainable for glycophorin A and spectrin or contained only pronormoblasts. Similar findings were obtained on spleen cells from mice which were made severely anemic by multiple injections with N-acetyl-phenylhydrazine. Antibodies to a sialoglycoprotein isolated from mouse red cell membranes stain 70–80% of all cells in the spleen of anemic animals, while only 1–2% of such cells are seen in the spleen of normal animals. Spectrin and glycophorin A could be labeled metabolically and isolated using specific antibodies. The human tumor cell line K562 expresses both membrane proteins, but induction experiments with various agents thus far have failed to change their expression.  相似文献   

12.
Previously, we reported that treatment of T cells with the 60-kDa heat shock protein (HSP60) inhibits chemotaxis. We now report that treatment of purified human T cells with recombinant human HSP60 or its biologically active peptide p277 up-regulates suppressor of cytokine signaling (SOCS)3 expression via TLR2 and STAT3 activation. SOCS3, in turn, inhibits the downstream effects of stromal cell-derived-1alpha (CXCL12)-CXCR4 interaction in: 1) phosphorylation of ERK1/2, Pyk2, AKT, and myosin L chain, required for cell adhesion and migration; 2) formation of rear-front T cell polarity; and 3) migration into the bone marrow of NOD/SCID mice. HSP60 also activates SOCS3 in mouse lymphocytes and inhibits their chemotaxis toward stromal cell-derived factor-1alpha and their ability to adoptively transfer delayed-type hypersensitivity. These effects of HSP60 could not be attributed to LPS or LPS-associated lipoprotein contamination. Thus, HSP60 can regulate T cell-mediated inflammation via specific signal transduction and SOCS3 activation.  相似文献   

13.
Heat shock proteins (HSPs) are thought to play a role in the development of cancer and to modulate tumor response to cytotoxic therapy. In this study, we have examined the expression of hsf and HSP genes in normal human prostate epithelial cells and a range of prostate carcinoma cell lines derived from human tumors. We have observed elevated expressions of HSF1, HSP60, and HSP70 in the aggressively malignant cell lines PC-3, DU-145, and CA-HPV-10. Elevated HSP expression in cancer cell lines appeared to be regulated at the post-messenger ribonucleic acid (mRNA) levels, as indicated by gene chip microarray studies, which indicated little difference in heat shock factor (HSF) or HSP mRNA expression between the normal and malignant prostate cell lines. When we compared the expression patterns of constitutive HSP genes between PC-3 prostate carcinoma cells growing as monolayers in vitro and as tumor xenografts growing in nude mice in vivo, we found a marked reduction in expression of a wide spectrum of the HSPs in PC-3 tumors. This decreased HSP expression pattern in tumors may underlie the increased sensitivity to heat shock of PC-3 tumors. However, the induction by heat shock of HSP genes was not markedly altered by growth in the tumor microenvironment, and HSP40, HSP70, and HSP110 were expressed abundantly after stress in each growth condition. Our experiments indicate therefore that HSF and HSP levels are elevated in the more highly malignant prostate carcinoma cells and also show the dominant nature of the heat shock-induced gene expression, leading to abundant HSP induction in vitro or in vivo.  相似文献   

14.
Adopting biochemical and proteomic approaches, we investigated the effect of some PPAR-agonists, a new class of differentiating agents, on human hepatocellular carcinoma Hep-G2 cell line. Cancer differentiation was assayed by checking albumin, transferrin and alpha-fetoprotein synthesis. Cell metabolism was studied by NMR spectroscopy of cell culture supernatants and by evaluation of mitochondrial respiratory chain enzyme activities. The two dimensional electrophoresis approach was employed to analyze modifications in the expression of cellular proteins linked to cell phenotype differentiation in the attempt to identify potential diagnostic and prognostic biomarkers of hepatocellular carcinoma. Results indicate that PPAR-agonists are able to act as differentiating inducers in human hepatocellular carcinoma Hep-G2 cell line as well as to inhibit mitochondrial respiratory chain Complex I, provoking a selective derangement of cellular oxidative metabolism. Lastly, two dimensional electrophoresis showed interesting modifications in the pattern of expression of cellular proteins that confirm biochemical data (increase in albumin and transferrin, decrease of alpha-fetoprotein synthesis) and, moreover, emphasize the meaning of these data by the increase of spots indicatively ascribed to HSP70 and catalase.  相似文献   

15.
Interleukin-3 (IL-3) is produced under various pathological conditions and is thought to be involved in the pathogenesis of inflammatory diseases; however, its function in bone homeostasis under normal conditions or nature of the downstream molecular targets remains unknown. Here we examined the effect of IL-3 on osteoclast differentiation from mouse and human bone marrow-derived macrophages (BMMs). Although IL-3 can induce osteoclast differentiation of multiple myeloma bone marrow cells, IL-3 greatly inhibited osteoclast differentiation of human BMMs isolated from healthy donors. These inhibitory effects of IL-3 were only observed at early time points (days 0 and 1). IL-3 inhibited the expression of c-Fos and NFATc1 in BMMs treated with RANKL. However, IL-3-mediated inhibition of osteoclast differentiation was not completely reversed by ectopic expression of c-Fos or NFATc1. Importantly, IL-3 induced inhibitor of DNA binding/differentiation (Id)1 in hBMMs, while Id2 were sustained during osteoclast differentiation of mBMMs treated with IL-3. Ectopic expression of NFATc1 in Id2-deficient BMMs completely reversed the inhibitory effect of IL-3 on osteoclast differentiation. Furthermore, inflammation-induced bone erosion was markedly inhibited by IL-3 administration. Taken together, our results suggest that IL-3 plays an inhibitory role in osteoclast differentiation by regulating c-Fos and Ids, and also exerts anti-bone erosion effects.  相似文献   

16.
17.
Transforming acidic coiled-coil (TACC) proteins are hypothesized to play a role in normal cellular growth and differentiation and to be involved in centrosomal microtubule stabilization. Our current studies aim to delineate the expression pattern of TACC3 protein during cellular differentiation and in a variety of normal human tissues. TACC3 is known to be upregulated in differentiating erythroid progenitor cells following treatment with erythropoietin and is required for replication of hematopoietic stem cells. However, we demonstrate that a dramatic upregulation of TACC3 also occurs during the early differentiation of NIH 3T3-L1 cells into adipocytes and PC12 cells into neurons, indicating that TACC3 mediates cellular differentiation in several cell types. Using real-time PCR, we quantitated the mRNA levels of TACC3 compared to TACC1 and TACC2 in various human adult tissues. We observed the highest expression of TACC3 mRNA in testis, spleen, thymus and peripheral blood leukocytes, all tissues undergoing high rates of differentiation, and a lower level of expression in ovary, prostate, pancreas, colon, small intestine, liver and kidney. In contrast, TACC1 and TACC2 mRNA levels are more widespread. By immunohistochemistry, we confirm that the TACC3 protein localizes to differentiating cell types, including spermatocytes, oocytes, epithelial cells, bone marrow cells and lymphocytes. Thus, these observations are concordant with a basic role for TACC3 during early stages of differentiation in normal tissues.  相似文献   

18.
To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10) interacts with heat shock protein 60 (HSP60) and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS) generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.  相似文献   

19.
Multiple members of the A, B, and C clusters of Hox genes are expressed in hematopoietic cells. Several of these Hox genes have been found to display distinctive expression patterns, with genes located at the 3' side of the clusters being expressed at their highest levels in the most primitive subpopulation of human CD34+ bone marrow cells and genes located at the 5' end having a broader range of expression, with downregulation at later stages of hematopoietic differentiation. To explore if these patterns reflect different functional activities, we have retrovirally engineered the overexpression of a 5'-located gene, HOXA10, in murine bone marrow cells and demonstrate effects strikingly different from those induced by overexpression of a 3'-located gene, HOXB4. In contrast to HOXB4, which causes selective expansion of primitive hematopoietic cells without altering their differentiation, overexpression of HOXA10 profoundly perturbed myeloid and B-lymphoid differentiation. The bone marrow of mice reconstituted with HOXA10-transduced bone marrow cells contained in high frequency a unique progenitor cell with megakaryocytic colony-forming ability and was virtually devoid of unilineage macrophage and pre-B-lymphoid progenitor cells derived from the transduced cells. Moreover, and again in contrast to HOXB4, a significant proportion of HOXA10 mice developed a transplantable acute myeloid leukemia with a latency of 19 to 50 weeks. These results thus add to recognition of Hox genes as important regulators of hematopoiesis and provide important new evidence of Hox gene-specific functions that may correlate with their normal expression pattern.  相似文献   

20.
In the present study, monocytes were treated with 5-azacytidine (azacytidine), gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER)- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号