首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants of Saccharomyces cerevisiae resistant to the antibiotic mucidin, a specific inhibitor of electron transport between cytochrome b and c, were isolated and divided into three phenotypic groups, as follows. Class 1 mutants were cross-resistant to a variety of mitochondrial inhibitors and exhibited no resistance at the mitochondrial level. Class 2 mutants were specifically resistant to mucidin exhibiting resistance also at the level of isolated mitochondria. Biochemical studies indicated that the mucidin resistance in class 2 mutants involved a modification of mucidin binding of inhibitory sites on the mitochondrial inner membrane without a significance change in the sensitivity of mitochondrial oxygen uptake to antimycin A, 2-heptyl-4-hydroxyquinoline-N-oxide, and 2,3-dimercaptopropanol. Class 3 was represented by a mutant which showed a high degree of resistance to mucidin and was cross-resistant to a variety of mitochondrial inhibitors at the cellular level but exhibited only a resistance to mucidin at the mitochondrial level. Genetic analysis of mucidin-resistant mutants revealed the presence of both nuclear and mitochondrial genes determining mucidin resistance/sensitivity in yeast. Resistance to mucidin in class 1 mutants was due to a single-gene nuclear recessive mutation (mucPR) whereas that in class 2 mutants was caused by mutations of mitochondrial genes. Resistance in class 3 mutant was determined both by single-gene nuclear and mitochondrial mutations. In the mitochondrial mutants the mucidin resistance segregated mitotically and the resistance determinant was lost upon induction of petite mutation by ethidium bromide. Allelism tests indicated that the mucidin resistance mutations fell into two genetic loci (MUC1 and MUC2) which were apparently not closely linked in the mitochondrial genome. Recombination studies showed that the two mitochondrial mucidin loci were not allelic with other mitochondrial loci RIB1, RIB2 and OLI1. An extremely high mucidin resistance at the cellular level was shown to arise from synergistic interaction of the nuclear gene mucPR and the mitochondrial mucidin-resistance gene (MR) in a cell. The results suggest that at least two mitochondrial gene products, responsible for mucidin resistance/sensitivity in yeast, take part in the formation of the cytochrome bc1 region of the mitochondrial respiratory chain.  相似文献   

2.
The properties of the ubiquinol-cytochrome c reductase complex (bc1 complex) have been studied in respiratory defective mutants of Saccharomyces cerevisiae bearing lesions in the core 1 subunit. All the cor1 mutants examined have greatly reduced concentrations of mitochondrial cytochrome b and display succinate-cytochrome c reductase activities near the limits of detection. Two mutants (E576 and C7), however, had 5% of wild type activity when the cells were grown at 23 degrees C, but not at 37 degrees C. The temperature-sensitive phenotype was determined to result from substitution of either Arg or Glu for Gly68 of the core 1 subunit. The respiratory competent revertants E576/R8 and C7/R4 derived from E576 and C7 retain the temperature sensitivity of the original mutants. Both revertants are temperature sensitive in vivo, but only mitochondria isolated from E576/R8 are temperature sensitive in vitro. The bc1 complex of mitochondria isolated from this revertant displays a normal value of the ratio Kcat/Km for cytochrome c and four times higher than the wild type for duroquinol. The succinate-cytochrome c reductase activity of E576/R8 is almost completely abolished after incubation at 37 degrees C for 90 min. It is inferred that the quaternary structure of ubiquinol-cytochrome c reductase complex is more labile at the nonpermissive temperature in the mutant and undergoes an alteration such that cytochrome b is no longer able to receive electrons through either the "o" or the "i" site pathway. The temperature lability and kinetic properties of the mutant enzyme point to a requirement of the core 1 not only for assembly but also for the catalytic activity of the complex.  相似文献   

3.
N Howell 《Biochemistry》1990,29(38):8970-8977
The mouse LA9 HQN-R11 cytochrome b mutant, in which the glycine residue at position 231 is replaced by aspartic acid, has increased resistance to all inhibitors of the Qn redox center. It is shown here that this single amino acid alteration has multiple and unexpectedly diverse effects upon the mitochondrial protonmotive bc1 complex. (1) The specific activities of both succinate- and ubiquinol-cytochrome c oxidoreductases in isolated mitochondria are reduced by approximately 65% in the mutant. The parallel reductions in both oxidoreductase activities are not compatible with simple Q pool kinetics for mitochondrial electron transport. (2) There is also a reduction in the relative concentration of cytochrome b in the mutant when calculated on the basis of mitochondrial protein; this decrease does not account for more than a small portion of the reduced catalytic fluxes. (3) The increased antimycin resistance of the mutant is lost upon solubilization by the detergent dodecyl maltoside of the bc1 complex from mitochondria. (4) In pre-steady-state assays of cytochrome b reduction by quinol, the mutant shows a reduced extent of reduction. It was observed in other experiments that there was less oxidant-induced extrareduction of cytochrome b in the mutant. These results could arise from a lowering of the midpoint potentials of both the cytochrome b-562 and cytochrome b-566 heme groups. Alternatively, these effects may reflect changes at the Qp and Qn quinone/quinol binding sites. (5) An unexplained observation for the mutant is the increased rate of cytochrome c1 reduction in the presence of myxothiazol. (6) These functional alterations in the LA9 HQN-R11 mutant are not accompanied by detectable changes in the spectral properties of the cytochrome b or c1 heme groups.  相似文献   

4.
DNA-dependent RNA polymerase of thermoacidophilic archaebacteria   总被引:7,自引:0,他引:7  
Among 979 non-glycerol growers of the yeast Schizosaccharomyces pombe, 40 strains were found to be deficient in the mitochondrial ATPase activity. Three of them exhibited an alteration in either the alpha or beta subunits of the F1ATPase. The alpha subunit was not immunodetected in the A23/13 mutant. The beta subunit was not immuno-detected in the B59/1 mutant. The existence of these two mutants shows that the alpha and beta subunits can be present independently of each other in the inner mitochondrial membrane. The beta subunit of the mutant F25/28 had a slower electrophoretic mobility than that of the wild-type beta subunit. This phenotype indicates abnormal processing or specific modification of the beta subunit. All mutants showed reduced activities of the NADH-cytochrome c reductase and of the cytochrome oxidase and a decreased synthesis of cytochrome aa3 and cytochrome b. This pleiotropic phenotype appears to result from specific modifications in the mitochondrial protein synthesis. The mitochondrial synthesis of four polypeptides (three cytochrome oxidase and one cytochrome b subunits) was markedly decreased or absent while three new polypeptides (Mr = 54000, 20000 and 15000) were detected in all the mutants analysed. This observation suggests that a functional F1ATPase is necessary for the correct synthesis and/or assembly of the mitochondrially made components of the cytochrome oxidase and cytochrome b complexes.  相似文献   

5.
The kinetic and circular dichroic properties of two yeast mutants that are resistant towards specific inhibitors of the mitochondrial cytochrome bc1 complex have been characterized. Both of these mutants have an altered cytochrome b gene in which aromatic residues are exchanged with non-polar residues in a highly conserved region of the protein. The mutant resistant to myxothiazol and mucidin that contains the substitution Phe129----Leu is not greatly affected either in its ubiquinol:cytochrome c reductase or in the spectral properties of cytochrome b. On the other hand, the mutant resistant to stigmatellin that contains the substitution Ile147----Phe shows a large decrease of the catalytic efficiency for ubiquinol and of the maximal turnover of its reductase activity. This stigmatellin mutant also shows an altered circular-dichroic spectrum of the low-potential haem of cytochrome b. This study provides biochemical and biophysical information for identifying a region in mitochondrial cytochrome b that may fulfill a crucial role in the binding of ubiquinol to the bc1 complex. The results are discussed also in terms of the structural model of cytochrome b having a core of four transmembrane helices.  相似文献   

6.
Cytochrome c1 is an amphiphilic protein which binds to the mitochondrial inner membrane, presumably through a hydrophobic region near the carboxyl (C)-terminus. In the preceding study (Hase, T., et al. (1987) J. Biochem. 102, 401-410), two cytochrome c1 mutations were constructed: delta 1 and delta 2 cytochromes c1, in which the C-terminal segments of 17 and 71 residues were replaced by foreign sequences of 20 and 15 residues, respectively. delta 2 cytochrome c1 had lost the putative membrane anchor. The two cytochrome c1 mutants were localized in mitochondria, but succinate-cytochrome c1 reductase activity was detected only in the mitochondria containing delta 1 cytochrome c1. The membrane association of the two mutant molecules as well as that of authentic cytochrome c1 was investigated. These three molecules were firmly attached to mitochondrial membranes and not solubilized on either sonication or sodium carbonate (pH 11) treatment. However, when the membranes were solubilized with Triton X-100, both the delta 1 and authentic cytochromes c1 were extracted from the membranes more easily than delta 2 cytochrome c1. By fractionating cholate extracts of mitochondrial membranes with ammonium sulfate, delta 1 cytochrome c1 was cofractionated with the enzymatic activity of complex III, but delta 2 cytochrome c1 was clearly separated from the complex III fraction. Trypsin treatment of mitochondria and mitoplasts showed that delta 2 cytochrome c1 was exposed to the intermembrane space, with such a topology that its trypsin susceptibility became much higher than that of the authentic molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. Increased specific activities of cytochrome c oxidase, catalase, succinate dehydrogenase, succinate-cytochrome c oxidoreductase, NADH-cytochrome c oxidoreductase and malate dehydrogenase were observed during glucose de-repression of Schizosaccharomyces pombe. 2. The cell-cycle of this organism was analysed by three different methods: (a) harvesting of cells at intervals from a synchronous culture, (b) separation of cells by rate-zonal centrifugation into different size classes and (c) separation of cells by isopycnic-zonal centrifugation into different density classes. 3. Measurement of enzyme activities during the cell-cycle showed that all the enzymes assayed [cytochrome c oxidase, catalase, acid p-nitrophenylphosphatase, NADH-dehydrogenase, NADH-cytochrome c oxidoreductase, NADPH-cytochrome c oxidoreductase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase (NADP) and fumarate hydratase] show periodic expression as ;peaks'. 4. Cytochrome c oxidase shows a single maximum at 0.67 of a cycle, whereas succinate dehydrogenase exhibits two maxima separated by 0.5 of a cell-cycle. 5. All other enzymes assayed showed two distinct maxima per cell-cycle; for catalase, malate dehydrogenase and NADPH-cytochrome c oxidoreductase there is the possibility of multiple fluctuations. 6. The single maximum of cytochrome c oxidase appears at a similar time in the cycle to one maximum of each of the other enzymes studied, except for NADH dehydrogenase. 7. These results are discussed with reference to previous observations on the expression of enzyme activities during the cell-cycle of yeasts.  相似文献   

8.
The respiratory bc1 complex transfers the electrons from ubiquinol to cytochrome c oxidase. Myxothiazol, strobilurin A (mucidin), and stigmatellin are center o inhibitors preventing electron transfer at the ubiquinone redox site Qo, which is located closer to the outer side of the inner mitochondrial membrane. The cytochrome b gene is carried by the organelle DNA. Yeast mutants resistant to myxothiazol and mucidin have been previously isolated and mapped to specific loci of the cytochrome b gene. In the present work, stigmatellin-resistant mutants were isolated and genetically analyzed. The mutated amino acid residues from seven myxothiazol-, four mucidin-, and six stigmatellin-resistant mutants have been identified by sequencing the relevant segments of the resistant cytochrome b gene. A third myxothiazol-resistant locus and the first stigmatellin-resistant locus were identified. The mutated codons were found to be clustered in two regions of the cytochrome b protein which appeared to be responsible for the resistance to Qo site inhibitors. The first region is within the end of the first, the second, and the beginning of the third exon whereas the second region is within exon five and the beginning of the sixth exon.  相似文献   

9.
We have cloned and sequenced a novel yeast nuclear gene ABC1 which suppresses, in multicopy, the cytochrome b mRNA translation defect due to the nuclear mutation cbs2-223. Analysis of the ABC1 gene shows that it is weakly expressed, it could code for a protein of 501 amino acids which has a typical presequence of a protein imported into mitochondria and which does not display a strong similarity to any known protein. Inactivation of the ABC1 gene is not lethal to the cell but leads to a respiratory defect: no oxygen uptake and no growth on non-fermentable media. A total absence of NADH-cytochrome c oxidoreductase and succinate-cytochrome c oxidoreductase activities concomitant with the presence of specific dehydrogenases, suggests a block in the bc 1 segment of the respiratory chain. However, all the cytochromes are spectrally detectable. Cytochrome b is quite efficiently reduced while cytochromes c1 and c are not. The function of ABC1 in the suppression of a defect in apocytochrome b mRNA translation and in the activity of the bc1 complex suggests that the ABC1 protein would be a novel chaperonin involved both in biogenesis and bioenergetics of mitochondria.  相似文献   

10.
The three E-beta-methoxyacrylate (MOA) inhibitors oudemansin A, strobilurin A and MOA stilbene [3-methoxy-2(2-styrylphenyl)propenic acid-methylester], which differ by more than one order of magnitude in their binding affinity to the mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc1 complex), bind to a site that is not identical to the binding site for ubihydroquinone, the substrate of the outer ubiquinone reaction site (Qo centre). Although the ubihydroquinone molecule is still bound in the presence of the MOA inhibitors, its electrons cannot be transferred to the iron-sulfur centre. A shift of the relative position of the ubihydroquinone molecule in the reaction centre due to a conformational distortion of cytochrome b induced by the binding of the MOA inhibitor seems to be the reason for the blocked electron transfer. Further analysis shows that ubihydroquinone affects the Kd values of all three MOA inhibitors tested: the values are raised by a constant factor of two, although the inhibitors bind with quite different affinity. The iron-sulfur protein is not involved in the binding of the MOA inhibitors. These results have direct implications for the proper use of MOA inhibitors in experiments designed to analyse the structure/mechanism relationship in cytochrome c reductase. In particular, point mutations recently described in MOA-inhibitor-resistant mutants can no longer be taken to affect necessarily the ubihydroquinone binding site.  相似文献   

11.
A temperature-sensitive respiration-deficient mutant of yeast lacks hemoproteins and accumulates coproporphyrin III when cultivated at elevated temperatures. Cells grown at 20 C respired normally and contained cytochromes a, b, and c. Cells grown at 35 C showed respiration-deficient mutant characters; they did not respire, lacked cytochromes, and accumulated coproporphyrin III. Addition of protoporphyrin IX or protohemin IX to the culture medium restored the respiratory activity of this mutant during growth at 35 C. The activities of various enzymes, including succinate-2,6-dichlorophenol indophenol (DCPIP), reduced nicotinamide adenine dinucleotide (NADH(2))-DCPIP, succinate-cytochrome c, and NADH(2)-cytochrome c oxidoreductase, and cytochrome oxidase, and the cytochrome c content of cells cultured in various conditions were determined. Changes in the number and structure of mitochondria were associated with changes in respiratory activity.  相似文献   

12.
The mitochondrial gene for the cytochrome b of Complex III has been cloned from a mouse L-cell mutant with increased resistance to 2-n-heptyl-4-hydroxyquinoline-N-oxide and other inhibitors which block reactions at the b562 heme group. Nucleotide sequencing revealed that this gene contained a G:A transition on the coding strand at position 14,830. At the amino acid level, this mutation results in the substitution of an aspartic acid residue for a conserved glycine at position 231 of cytochrome b. Based upon current models for the secondary structure of cytochrome b, the altered amino acid lies in close proximity to one of the invariant histidine residues involved in binding the heme groups. Combining this result with the previous biochemical studies of this mutant, we hypothesize that the insertion of this highly charged side chain alters the conformation around the b562 heme group such that 2-n-heptyl-4-hydroxyquinoline-N-oxide and the other inhibitors of this group have reduced access to the inhibitor binding domain.  相似文献   

13.
The in vitro effects of PR toxin, a toxic secondary metabolite produced by certain strains of Penicillium roqueforti, on the membrane structure and function of rat liver mitochondria were investigated. It was found that the respiratory control and oxidative phosphorylation of the isolated mitochondria decreased concomitantly when the toxin was added to the assay system. The respiratory control ratio decreased about 60% and the ADP/O ratio decreased about 40% upon addition of 3.1 X 10(-5) M PR toxin to the highly coupled mitochondria. These findings suggest that PR toxin impairs the structural integrity of mitochondrial membranes. On the other hand, the toxin inhibited mitochondrial respiratory functions. It exhibited noncompetitive inhibitions to succinate oxidase, succinate-cytochrome c reductase, and succinate dehydrogenase activities of the mitochondrial respiratory chain. The inhibitory constants of PR toxin to these three enzyme systems were estimated to be 5.1 X 10(-6), 2.4 X 10(-5), and 5.2 X 10(-5) M, respectively. Moreover, PR toxin was found to change the spectral features of succinate-reduced cytochrome b and cytochrome c1 in succinate-cytochrome c reductase and inhibited the electron transfer between the two cytochromes. These observations indicate that the electron transfer function of succinate-cytochrome c reductase was perturbed by the toxin. However, PR toxin did not show significant inhibition of either cytochrome oxidase or NADH dehydrogenase activity of the mitochondria. It is thus concluded that PR toxin exerts its effect on the mitochondrial respiration and oxidative phosphorylation through action on the membrane and the succinate-cytochrome c reductase complex of the mitochondria.  相似文献   

14.
Mutational analysis of the mouse mitochondrial cytochrome b gene   总被引:13,自引:0,他引:13  
The protonmotive cytochrome b protein of the mitochondrial bc1 respiratory chain complex contains two reactions centers, designated Qo and Qi, which can be distinguished by the effects of different inhibitors. The nucleotide sequences have been determined of the mitochondrial cytochrome b genes from a series of mouse cell mutants selected for increased inhibitor resistance. Each mutant contains a single nucleotide change which results in an amino acid substitution. When the proximity of the altered amino acid residues to the histidines involved in heme ligation is considered, the results support a model for cytochrome b folding in which there are eight transmembrane domains rather than the nine of the Widger-Saraste model. Replacement of the Gly38 residue by valine results in resistance to the Qi inhibitors antimycin A and funiculosin but not 2-n-heptyl-hydroxyquinoline-N-oxide. Based upon sequence comparisons of mitochondrial and bacterial cytochrome b and chloroplast b6 proteins, the region of the molecule involved in antimycin binding is as highly conserved as those domains involved in heme ligation. It is suggested that the antimycin binding domain of cytochrome b is involved in forming the Qi reaction center. Alterations of the Gly142 and Thr147 residues result in resistance to myxothiazol and stimatellin, respectively. While both inhibitors block the Qo reaction center, the two mutations do not confer cross-resistance to each other. This region of cytochrome b is the most highly conserved during evolution and these inhibitor binding sites probably occur within the protein domain constituting the Qo reaction center. In addition, there is a less conserved region of the protein, defined by the Leu294 residue, which may function in binding the hydrophobic portions of Qo inhibitors.  相似文献   

15.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  相似文献   

16.
17.
Preparations enriched in Chlamydomonas reinhardtii thylakoids have proven useful in the study of photosynthesis. Many of their polypeptides however remain unidentified. We report here on three of those, h1 (34 kDa), h2 (11 kDa), and P3 (63 kDa). h1, h2, and P3 are present in all tested mutants of C. reinhardtii lacking either one or several of the photosynthetic chain complexes or depleted in thylakoid membranes. h2 is an ascorbate-reducible, soluble c550-type cytochrome encoded in the nucleus. It cross-reacts immunologically with mitochondrial cytochromes c from various sources and contains a hexapeptide encoded in C. reinhardtii cytochrome c cDNA. P3, a nuclear-encoded peripheral protein, cross-reacts with various ATP synthase beta subunits. Its N-terminal sequence is encoded in C. reinhardtii mitochondrial beta subunit cDNA. h1 behaves as an integral hemoprotein; it is absent in a mitochondrial mutant that carries a deletion in apocytochrome b gene. We conclude that C. reinhardtii mitochondrial membranes copurify with thylakoid membranes. h1 is part of the cytochrome bc1 complex, h2 is cytochrome c, and P3 is the beta subunit of mitochondrial ATP synthase.  相似文献   

18.
A mutant of Neurospora crassa (cni-1) has been isolated that has two pathways of mitochondrial respiration. One pathway is sensitive to cyanide and antimycin A, the other is sensitive only to salicyl hydroxamic acid. Respiration can proceed through either pathway and both pathways together in this mutant account for greater than 90% of all mitochondrial respiration. The cni-1 mutation segregates as a nuclear gene in crosses to other strains of Neurospora. Absorption spectra of isolated mitochondria from cni-1 show typical b- and c-type cytochromes but the absorption peaks corresponding to cytochrome aa(3) are not detectable. Extraction of soluble cytochrome c-546 from these mitochondria followed by reduction with ascorbate reveals a new absorption peak at 426 nm that is not present in wild-type mitochondria. This peak may be due to an altered cytochrome oxidase with abnormal spectral properties. Mitochondria from cni-1 have elevated levels of succinate-cytochrome c reductase but reduced levels of nicotinamide adenine dinucleotide reduced form cytochrome c reductase and of cyanide- and azide-sensitive cytochrome c oxidase. These studies suggest that the cni-1 mutation results in the abnormal assembly of cytochrome c oxidase so that the typical cytochrome aa(3) spectrum is lost and the enzyme activity is reduced. As a consequence of this alteration, a cyanide-insensitive respiratory pathway is elaborated by these mitochondria which may serve to stimulate adenosine 5'-triphosphate production via substrate level phosphorylation by glycolysis and the Krebs cycle.  相似文献   

19.
The effect of cytochrome b on the assembly of the subunits of complex III into the inner mitochondrial membrane has been studied in a mutant of yeast (W-267, Box 6-2) that lacks a spectrally detectable cytochrome b and synthesizes a shortened form of apocytochrome b. We recently reported that several cytochrome b-deficient mutants contained significantly diminished amounts of core proteins I and II as well as the iron-sulfur protein, but contained equal amounts of cytochrome c1 compared to the wild type (K. Sen and D. S. Beattie, Arch. Biochem. Biophys. 242, 393-401, 1985). In the present study, the time course of processing of precursors of both core protein I and the iron-sulfur protein which had accumulated in cells treated with the uncoupler carbonyl m-chlorophenyl hydrazone (CCCP) was noted to be significantly lower in the mutant compared to the wild type. The amounts of the mature forms of these proteins in mitochondria pulse labeled under different conditions was also considerably decreased at all times studied. The synthesis of both proteins appeared to be unaffected in the mutant, as the precursor forms of both proteins accumulated to the same extent when processing in vivo was blocked by CCCP. Furthermore, translation of RNA in a reticulocyte lysate in vitro indicated that the messenger RNAs for both proteins were present in the mutant and translated with equal efficiency. The import into isolated mitochondria of the precursor forms of the iron-sulfur protein synthesized in the cell-free system was also decreased in the mutant mitochondria. In addition, the precursor form was bound to the exterior of the mitochondrial membrane where it was sensitive to digestion with proteases. By contrast, the synthesis and processing of cytochrome c1 appeared to be unaffected in these mutants. These results suggest that cytochrome b is necessary for the proper processing and assembly of both core protein I and the iron-sulfur protein, but not for cytochrome c1, into complex III of the inner mitochondrial membrane.  相似文献   

20.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号