首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the two components of developmental homeostasis, that is canalization and developmental stability (DS), is currently debated. To appraise this relationship, the levels and morphological patterns of interindividual variation and fluctuating asymmetry were assessed using a geometric morphometric approach applied to the skulls of laboratory samples of the house mouse. These three samples correspond to two random-bred strains of the two European subspecies of the house mouse and their F1 hybrids. The inter- and intraindividual variation levels were found to be smaller in the hybrid group compared to the parental ones, suggesting a common heterotic effect on skull canalization and DS. Both buffering mechanisms might then depend on the same genetic condition, i.e. the level of heterozygosity. However, related morphological patterns did not exhibit any congruence. In contradiction with previous studies on insect wing traits, we therefore suggest that canalization and DS may not act on the same morphological characters. The fact that this discrepancy could be related to the functional importance of the symmetry of the characters under consideration is discussed in the light of our knowledge of the genetic bases of both components of developmental homeostasis.  相似文献   

2.
Canalization may play a critical role in molding patterns of integration when variability is regulated by the balance between processes that generate and remove variation. Under these conditions, the interaction among those processes may produce a dynamic structure of integration even when the level of variability is constant. To determine whether the constancy of variance in skull shape throughout most of postnatal growth results from a balance between processes generating and removing variation, we compare covariance structures from age to age in two rodent species, cotton rats (Sigmodon fulviventer) and house mice (Mus musculus domesticus). We assess the overall similarity of covariance matrices by the matrix correlation, and compare the structures of covariance matrices using common subspace analysis, a method related to common principal components (PCs) analysis but suited to cases in which variation is so nearly spherical that PCs are ambiguous. We find significant differences from age to age in covariance structure and the more effectively canalized ones tend to be least stable in covariance structure. We find no evidence that canalization gradually and preferentially removes deviations arising early in development as we might expect if canalization results from compensatory differential growth. Our results suggest that (co)variation patterns are continually restructured by processes that equilibrate variance, and thus that canalization plays a critical role in molding patterns of integration.  相似文献   

3.
The robust skull and highly subdivided adductor mandibulae muscles of triggerfishes provide an excellent system within which to analyze the evolutionary processes underlying phenotypic diversification. We surveyed the anatomical diversity of balistid jaws using Procrustes‐based geometric morphometric analyses and a phylomorphospace approach to quantifying morphological transformation through evolution. We hypothesized that metrics of interspecific cranial shape would reveal patterns of phylogenetic diversification that are congruent with functional and ecological transformation. Morphological landmarks outlining skull and adductor mandibulae muscle shape were collected from 27 triggerfish species. Procrustes‐transformed skull shape configurations revealed significant phylogenetic and size‐influenced structure. Phylomorphospace plots of cranial shape diversity reveal groupings of shape between different species of triggerfish that are mostly consistent with phylogenetic relatedness. Repeated instances of convergence upon similar cranial shape by genetically disparate taxa are likely due to the functional demands of shared specialized dietary habits. This study shows that the diversification of triggerfish skulls occurs via modifications of cranial silhouette and the positioning of subdivided jaw adductor muscles. Using the morphometric data collected here as input to a biomechanical model of triggerfish jaw function, we find that subdivided jaw adductors, in conjunction with a unique cranial skeleton, have direct biomechanical consequences that are not always congruent with phylomorphospace patterns in the triggerfish lineage. The integration of geometric morphometrics with biomechanical modeling in a phylogenetic context provides novel insight into the evolutionary patterns and ecological role of muscle subdivisions in triggerfishes. J. Morphol. 277:737–752, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Neurocranial globularity is one of the few derived traits defining anatomically modern humans. Variations in this trait derive from multiple and complex interactions between portions of the brain and the size and shape of the cranial base, among other factors. Given their evolutionary and functional importance, neurocranial globularity is expected to present high genetic and developmental constraints on their phenotypic expression. Here we applied two independent approaches to investigate both types of constraints. First, we assessed if patterns of morphological integration are conserved or else disrupted on a series of artificially deformed skulls in comparison to non-deformed (ND) ones. Second, after the estimation of the genetic covariance matrix for human skull shape, we explored how neurocranial globularity would respond to putative selective events disrupting the normal morphological patterns. Simulations on these deviations were explicitly set to replicate the artificial deformation patterns in order to compare developmental and genetic constraints under the same biomechanical conditions. In general terms, our results indicate that putative developmental constraints help to preserve some aspects of normal morphological integration even in the deformed skulls. Moreover, we find that the response to selection in neurocranial globularity is pervasive. In other words, induced changes in the vault generate a global response, indicating that departures from normal patterns of neurocranial globularity are genetically constrained. In summary, our combined results suggest that neurocranial globularity behaves as a highly genetic and developmental constrained trait. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Neus Martínez-Abadías and Rolando González-José contributed equally to this work.  相似文献   

5.
It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others.  相似文献   

6.
In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the ‘nasal dome’, in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals.  相似文献   

7.
Variability contrasts with variation in that variability describes the potential for variation, not simply the expressed variation. The power of studying variability lies in creating a conceptual framework around which the relationship between the genotype and phenotype can be understood. Here, we attempt to demonstrate the importance of phenotypic variability, how it structures variation, and how fundamental developmental processes structure variability. Given the broad scope of this topic, we focus on three widely studied properties of variability: canalization, developmental stability and morphological integration. We have organized the paper to emphasize the importance of differentiating between the theory surrounding these components of phenotypic variability, their measurement and the biological factors surrounding their expression. First, we define these properties of variability, how they relate to each other and to variability as a whole. Second, we summarize the common methods of measurement for canalization, developmental stability and morphological integration and the reasoning behind these methods. Finally, we focus on jaw development as an example of how the basic processes of development affect variability and the resultant variation, with emphasis on how processes at all levels of the organismal hierarchy interact with one another and contribute to phenotypic variability.  相似文献   

8.
The theory of morphological integration and modularity predicts that if functional correlations among traits are relevant to mean population fitness, the genetic basis of development will be molded by stabilizing selection to match functional patterns. Yet, how much functional interactions actually shape the fitness landscape is still an open question. We used the anuran skull as a model of a complex phenotype for which we can separate developmental and functional modularity. We hypothesized that functional modularity associated to functional demands of the adult skull would overcome developmental modularity associated to bone origin at the larval phase because metamorphosis would erase the developmental signal. We tested this hypothesis in toad species of the Rhinella granulosa complex using species phenotypic correlation pattern (P‐matrices). Given that the toad species are distributed in very distinct habitats and the skull has important functions related to climatic conditions, we also hypothesized that differences in skull trait covariance pattern are associated to differences in climatic variables among species. Functional and hormonal‐regulated modules are more conspicuous than developmental modules only when size variation is retained on species P‐matrices. Without size variation, there is a clear modularity signal of developmental units, but most species have the functional model as the best supported by empirical data without allometric size variation. Closely related toad species have more similar climatic niches and P‐matrices than distantly related species, suggesting phylogenetic niche conservatism. We infer that the modularity signal due to embryonic origin of bones, which happens early in ontogeny, is blurred by the process of growth that occurs later in ontogeny. We suggest that the species differing in the preferred modularity model have different demands on the orbital functional unit and that species contrasting in climate are subjected to divergent patterns of natural selection associated to neurocranial allometry and T3 hormone regulation.  相似文献   

9.
Most studies of morphological variability in or among species are performed on adult specimens. However, it has been proven that knowledge of the patterns of size and shape changes and their covariation during ontogeny is of great value for the understanding of the processes that produce morphological variation. In this study, we investigated the patterns of sexual dimorphism, phylogenetic variability, and ontogenetic allometry in the Spermophilus citellus with geometric morphometrics applied to cross-sectional ontogenetic data of 189 skulls from three populations (originating from Burgenland, Banat, and Dojran) belonging to two phylogenetic lineages (the Northern and Southern). Our results indicate that sexual dimorphism in the ventral cranium of S. citellus is expressed only in skull size and becomes apparent just before or after the first hibernation because of accelerated growth in juvenile males. Sexes had the same pattern of ontogenetic allometry. Populations from Banat and Dojran, belonging to different phylogroups, were the most different in size but had the most similar adult skull shape. Phylogenetic relations among populations, therefore, did not reflect skull morphology, which is probably under a significant influence of ecological factors. Populations had parallel allometric trajectories, indicating that alterations in development probably occur prenatally. The species’ allometric relations during cranial growth showed characteristic nonlinear trajectories in the two northern populations, with accelerated shape changes in juveniles and continued but almost isometric growth in adults. The adult cranial shape was reached before sexual maturity of both sexes and adult size after sexual maturity. The majority of shape changes during growth are probably correlated with the shift from a liquid to a solid diet and to a lesser degree due to allometric scaling, which explained only 20 % of total shape variation. As expected, viscerocranial components grew with positive and neurocranial with negative allometry.  相似文献   

10.
Developmental stability (DS) and canalization are key determinants of phenotypic variation. To provide a better understanding of how postnatal growth is involved in determining the effects of DS and canalization on phenotypic variation, we studied within- and among-individual variation in head shape in ontogenetic series of lizards inhabiting urban and rural environments. Urban lizards exhibited increased fluctuating asymmetry during the early postnatal stages, but asymmetry levels decreased during growth. By contrast, asymmetry remained constant across the investigated size range in the rural population. In addition, urban juveniles were more variable for symmetric shape and deviated more from the group shape-size allometric trajectory, but both indices declined across ontogeny. Congruent patterns of within- and among-individual variation suggest that both DS and canalization may rely on similar underlying mechanisms. Further, the ontogenetic reduction of variation in the urban population suggests that compensatory growth may aid in buffering phenotypic variation and correcting deviances from the established developmental path. Alternatively, passive mechanisms and population dynamics may also explain the decrease of phenodeviants in urban populations. Significant correlations between symmetric and asymmetric shape, as well as similar integration patterns between the two populations, suggest that similar developmental mechanisms regulate head shape in both environments. Overall, these results highlight the relevance of both pre- and post-natal dynamics in determining levels of phenotypic variation, enhancing our understanding of how organisms respond to perturbations to DS and canalization under stressful conditions.  相似文献   

11.
Different factors and processes that produce phenotypic variation at the individual, population, or interspecific level can influence or alter the covariance structure among morphological traits. Therefore, studies of the patterns of integration and modularity at multiple levels—static, ontogenetic, and evolutionary, can provide invaluable data on underlying factors and processes that structured morphological variation, directed, or constrained evolutionary changes. Our dataset, consisting of cranium shape data for 14 lizard species from the family Lacertidae, with substantial samples of hatchlings and adults along with their inferred evolutionary relationships, enabled us to assess modularity and morphological integration at all three levels. Five, not mutually exclusive modularity hypotheses of lizard cranium, were tested, and the effects of allometry on intensity and the pattern of integration and modularity were estimated. We used geometric morphometrics to extract symmetric and asymmetric, as well as allometric and nonallometric, components of shape variation. At the static level, firm confirmation of cranial modularity was found for hypotheses which separate anterior and posterior functional compartments of the skull. At the ontogenetic level, two alternative hypotheses (the “anteroposterior” and “neurodermatocranial” hypotheses) of ventral cranial modularity were confirmed. At the evolutionary level, the “neurodermatocranial” hypothesis was confirmed for the ventral cranium, which is in accordance with the pattern observed at the ontogenetic level. The observed pattern of static modularity could be driven by functional demands and can be regarded as adaptive. Ontogenetic modularity and evolutionary modularity show the same developmental origin, indicating conservatism of modularity patterns driven by developmental constraints.  相似文献   

12.
Developmental processes of organisms are programmed to proceed in a finely regulated manner and finish within a certain period of time depending on the ambient environmental conditions. Therefore, variation in the developmental period under controlled genetic and environmental conditions indicates innate instability of the developmental process. In this study, we aimed to determine whether a molecular machinery exists that regulates the canalization of the developmental period and, if so, to test whether the same mechanism also stabilizes a morphological trait. To search for regions that influence the instability of the developmental period, we conducted genome-wide deficiency mapping with 441 isogenic deficiency strains covering 65.5% of the Drosophila melanogaster genome. We found that 11 independent deficiencies significantly increased the instability of the developmental period and 5 of these also significantly increased the fluctuating asymmetry of wing shape although there was no significant correlation between the instabilities of developmental period and wing shape in general. These results suggest that canalization processes of the developmental period and morphological traits are at least partially independent. Our findings emphasize the potential importance of temporal variation in development as an indicator of developmental stability and canalization and provide a novel perspective for understanding the regulation of phenotypic variability.  相似文献   

13.
Evolutionary integration (covariation) of traits has long fascinated biologists because of its potential to elucidate factors that have shaped morphological evolution. Studies of tetrapod crania have identified patterns of evolutionary integration that reflect functional or developmental interactions among traits, but no studies to date have sampled widely across the species-rich lissamphibian order Anura (frogs). Frogs exhibit a vast range of cranial morphologies, life history strategies, and ecologies. Here, using high-density morphometrics we capture cranial morphology for 172 anuran species, sampling every extant family. We quantify the pattern of evolutionary modularity in the frog skull and compare patterns in taxa with different life history modes. Evolutionary changes across the anuran cranium are highly modular, with a well-integrated “suspensorium” involved in feeding. This pattern is strikingly similar to that identified for caecilian and salamander crania, suggesting replication of patterns of evolutionary integration across Lissamphibia. Surprisingly, possession of a feeding larval stage has no notable influence on cranial integration across frogs. However, late-ossifying bones exhibit higher integration than early-ossifying bones. Finally, anuran cranial modules show diverse morphological disparities, supporting the hypothesis that modular variation allows mosaic evolution of the cranium, but we find no consistent relationship between degree of within-module integration and disparity.  相似文献   

14.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

15.
Understanding the developmental and genetic basis for evolutionarily significant morphological variation in complex phenotypes such as the mammalian skull is a challenge because of the sheer complexity of the factors involved. We hypothesize that even in this complex system, the expression of phenotypic variation is structured by the interaction of a few key developmental processes. To test this hypothesis, we created a highly variable sample of crania using four mouse mutants and their wild-type controls from similar genetic backgrounds with developmental perturbations to particular cranial regions. Using geometric morphometric methods we compared patterns of size, shape, and integration in the sample within and between the basicranium, neurocranium, and face. The results highlight regular and predictable patterns of covariation among regions of the skull that presumably reflect the epigenetic influences of the genetic perturbations in the sample. Covariation between relative widths of adjoining regions is the most dominant factor, but there are other significant axes of covariation such as the relationship between neurocranial size and basicranial flexion. Although there are other sources of variation related to developmental perturbations not analyzed in this study, the patterns of covariation created by the epigenetic interactions evident in this sample may underlie larger scale evolutionary patterns in mammalian craniofacial form.  相似文献   

16.
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.  相似文献   

17.

Background

Although variation provides the raw material for natural selection and evolution, few empirical data exist about the factors controlling morphological variation. Because developmental constraints on variation are expected to act by influencing trait correlations, studies of modularity offer promising approaches that quantify and summarize patterns of trait relationships. Modules, highly-correlated and semi-autonomous sets of traits, are observed at many levels of biological organization, from genes to colonies. The evolutionary significance of modularity is considerable, with potential effects including constraining the variation of individual traits, circumventing pleiotropy and canalization, and facilitating the transformation of functional structures. Despite these important consequences, there has been little empirical study of how modularity influences morphological evolution on a macroevolutionary scale. Here, we conduct the first morphometric analysis of modularity and disparity in two clades of placental mammals, Primates and Carnivora, and test if trait integration within modules constrains or facilitates morphological evolution.

Principal Findings

We used both randomization methods and direct comparisons of landmark variance to compare disparity in the six cranial modules identified in previous studies. The cranial base, a highly-integrated module, showed significantly low disparity in Primates and low landmark variance in both Primates and Carnivora. The vault, zygomatic-pterygoid and orbit modules, characterized by low trait integration, displayed significantly high disparity within Carnivora. 14 of 24 results from analyses of disparity show no significant relationship between module integration and morphological disparity. Of the ten significant or marginally significant results, eight support the hypothesis that integration within modules constrains morphological evolution in the placental skull. Only the molar module, a highly-integrated and functionally important module, showed significantly high disparity in Carnivora, in support of the facilitation hypothesis.

Conclusions

This analysis of within-module disparity suggested that strong integration of traits had little influence on morphological evolution over large time scales. However, where significant results were found, the primary effect of strong integration of traits was to constrain morphological variation. Thus, within Primates and Carnivora, there was some support for the hypothesis that integration of traits within cranial modules limits morphological evolution, presumably by limiting the variation of individual traits.  相似文献   

18.
The aim of the present work was to investigate the relationship between canalization and developmental stability under varying environmental conditions. Three different cohorts of Mastomys natalensis (Rodentia, Muridae), displaying different growth trajectories, were analysed by means of geometric morphometrics. A set of 23 landmarks was digitalized on the dorsal skull of 292 specimens from Morogoro (Tanzania). Patterns of among‐ and within‐individual (measured as fluctuating asymmetry, FA) variation were assessed and compared among and within the three groups to test for the presence of a common mechanism between canalization and developmental stability. Results showed that there was no congruence between canalization and developmental stability: (1) levels of FA and among‐individual variation varied in a discordant fashion, (2) no correspondence between the variance–covariance matrix of among‐ and within individual variation was found, and (3) environmental effects were able to alter the covariance structure of among‐individual variation leaving patterns associated with fluctuating asymmetry unaffected. These findings support the view of multiple mechanisms underlying developmental buffering of shape variation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 207–216.  相似文献   

19.
Allometric patterns of skull‐shape variation can have significant impacts on cranial mechanics and feeding performance, but have received little attention in previous studies. Here, we examine the impacts of allometric skull‐shape variation on feeding capabilities in the cat family (Felidae) with linear morphometrics and finite element analysis. Our results reveal that relative bite force diminishes slightly with increasing skull size, and that the skulls of the smallest species undergo the least strain during biting. However, larger felids are able to produce greater gapes for a given angle of jaw opening, and they have overall stronger skulls. The two large felids in this study achieved increased cranial strength by increasing skull bone volume relative to surface area. Allometry of skull geometry in large felids reflects a trade‐off between the need to increase gape to access larger prey while maintaining the ability to resist unpredictable loading when taking large, struggling prey.  相似文献   

20.
Understanding the processes underlying morphological diversification is a central goal in ecology and evolutionary biology and requires the integration of information about phylogenetic divergence and ecological niche diversity. In the present study, we use geometric morphometrics and comparative methods to investigate morphological diversification in Neotropical spiny rats of the family Echimyidae. Morphological diversification is studied as shape variation in the skull, comprising a structure composed of four distinct units: vault, base, orognathofacial complex, and mandible. We demonstrate association among patterns of variation in shape in different cranial units, levels of phylogenetic divergence, and ecological niche diversification. At the lower level of phylogenetic divergence, there is significant and positive concordance between patterns of phylogenetic divergence and cranial shape variation in all cranial units. This concordance may be attributable to the phylogenetic and shape distances being calculated between species that occupy the same niche. At higher phylogenetic levels of divergence and with ecological niche diversity, there is significant concordance between shape variation in all four cranial units and the ecological niches. In particular, the orognathofacial complex revealed the most significant association between shape variation and ecological niche diversity. This association may be explained by the great functional importance of the orognathofacial complex.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 646–660.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号