首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the vascular volume response of hypertensive men during exercise has been rather well characterized, the effect of resting heat exposure in this patient population has not been examined. This was done in the present report in seven men with high blood pressure (BP) (i.e., diastolic pressure greater than 12 kPa (90 mmHg) upon initial interview) and 5 normotensive control subjects. 50 min after each subject had consumed an amount of water equal to 1% of his body weight, he reclined on a cot. 10 min later the subject was carried into an environmental chamber equilibrated at Tdb = 45 degrees C, Twb = 28 degrees C. Free-flowing venous blood samples were obtained from a cubital vein, and BP and heart rate were measured, before the heat exposure and at 15 min intervals during the experiment. Within 30 min systolic, diastolic and mean BP of the high BP subjects had decreased to normal levels; no BP changes were detected in normotensive subjects. Accompanying this depressor response was an exaggerated elevation in plasma glucose concentration. No alterations were found with haematocrit, plasma osmolality or electrolytes, or total protein and albumin. The data suggest that heat exposure may have been more stressful for the subjects with high BP than for their controls. This finding implies that phasic depressor responses may be as important as phasic pressor episodes in the aetiology of established essential hypertension.  相似文献   

2.
Acclimatization to heat before proceeding underground is a requirement for each South African mine laborer. Certain individuals among this large population cannot be acclimatized to heat (33.3 degrees C db, 31.7 degrees C wb) and are classified as heat intolerant. In this study certain body fluid responses to heat and work were compared between a group of 19 heat-tolerant (HT) and of 15 heat-intolerant (HI) subjects. To the factors known to affect heat tolerance such as age, weight, and oxygen consumption must now be added differences in body fluid responses. The HI group of subjects failed to hemodilute to the same degree as the HT group though working at the same relative work loads (30% and 50% VO2 max). As the 4-h work period (33.3 degrees C db, 31.7 degrees C wb) continued, the HI group did not maintain hemodilution in spite of the lower absolute work loads, sweat rates, and water deficits suffered by this group. From analysis of blood constituent changes it was suggested that the reason for the differences noted in body fluid dynamics concerned plasma protein equilibrium across capillary walls as well as the protein population of interstitial spaces.  相似文献   

3.
Malaria-induced anemia exceeds that attributable to direct parasite destruction of erythrocytes. Since spleen and liver weights increase significantly, hemodilution may account for part of this excessive anemia. To determine the role of hemodilution in the etiology of anemia, vascular volumes were measured with Evans blue and isotope dilution techniques. The Evans blue dilution technique showed that blood volume increased 20%, in infected Balb/C mice. However, when blood volume was measured with Evans blue bound to protein prior to injection or with iodinated albumin and chromium-labelled red blood cells no significant change was detected. Evidently the permeability of the vasculature and/or erythrocytes of infected mice was increased so that injected Evans blue occupied a space larger than the vascular volume before becoming bound to plasma proteins. We conclude that hemodilution is not involved in the excessive anemia of Plasmodium berghei-infected Balb/C mice.  相似文献   

4.
This study examined the effects of hypohydration on plasma volume and red cell volume during rest in a comfortable (20 degrees C, 40% relative humidity) and exercise in a hot-dry (49 degrees C, 20% relative humidity) environment. A group of six male and six female volunteers [matched for maximal O2 uptake (VO2 max)] completed two test sessions following a 10-day heat acclimation program. One test session was completed when subjects were euhydrated and the other when subjects were hypohydrated (-5% from base-line body wt). The test sessions consisted of rest for 30 min in a 20 degrees C antechamber, followed by two 25-min bouts of treadmill walking (approximately 30% of VO2 max) in the heat, interspersed by 10 min of rest. No significant differences were found between the genders for the examined variables. At rest, hypohydration elicited a 5% decrease in plasma volume with less than 1% change in red cell volume. During exercise, plasma volume increased by 4% when subjects were euhydrated and decreased by 4% when subjects were hypohydrated. These percent changes in plasma volume values were significantly (P less than 0.01) different between the euhydration and hypohydration tests. Although red cell volume remained fairly constant during the euhydration test, these values were significantly (P less than 0.01) lower when hypohydrated during exercise. We conclude that hydration level alters vascular fluid shifts during exercise in a hot environment; hemodilution occurs when euhydrated and hemoconcentration when hypohydrated during light intensity exercise for this group of fit men and women.  相似文献   

5.
During the first exposure of exercising subjects to hot environments (30-50 degrees C), cardiac output, heart rate, and body temperature increase over that seen in cool environments, while stroke volume decreases. If daily heat exposures occur, during the second heat exposure, heart rates and rectal temperatures are decreased from day 1 while cardiac output is maintained. This decrease in physiological strain occurs with little or no increase in evaporative heat loss. The alleviating agent appears to be an expansion of plasma volume. Several brief studies have indicated decreases in cardiac filling pressure during exercise in heat, and though inferential, it appears that the progressive increase in plasma volume during the first five to six days of heat exposure assists in maintaining cardiac filling pressure. Later, with increased evaporative heat loss due to increased sweat secretion, the mechanism of supplying increased volume to maintain cardiac filling is changed; fluid is transferred from extravascular to intravascular compartment, thus protecting venous return and cardiac filling pressure. These statements are based on limited data, and there is need of experiments designed to confirm or deny certain conclusions as to the role of cardiac filling pressure in acclimatization to heat.  相似文献   

6.
Protein synthesis is shown to be very heat-sensitive in Chinese hamster cells. It is shut off completely following 15-20 min at 42 degrees C whereas RNA and DNA syntheses are affected only after much longer exposure times. Cells recover from inhibition of protein synthesis upon transfer to 37 degrees C. The degree of recovery is inversely related to the duration of heat exposure and it fits cell survival quantitatively. Cells which become temporarily heat-resistant by prior heat-treatment, are able to recover translational capacity even after a very long exposure to heat (4 h at 42 degrees C). Spermine, which enhances heat-induced cell killing, does not increase the response to heat of protein, RNA and DNA synthesis. Ornithine decarboxylase (ODC, EC 4.1.1.17) activity is lost exponentially following a 20 min lag period during exposure at 42 degrees C. The half-life observed (12 min) is in agreement with the reported values of half-life of decay of ODC in other systems. It is concluded that the loss of activity is due to the shut-off of translation. The activity of ODC is recovered upon transfer to 37 degrees C. The presence of spermine during heating does not affect the loss of enzyme activity but delays its recovery by about 3 h upon transfer to 37 degrees C.  相似文献   

7.
The effect of central angiotensin AT(1) receptor blockade on thermoregulation and water intake after heat exposure was investigated. Rats were placed in a chamber heated to 39 +/- 1 degrees C for 60 min and then returned to their normal cage (at 22 degrees C), and water intake was measured for 120 min. Artificial cerebrospinal fluid (5 microl) was injected intracerebroventricularly 60 min before heat exposure in five control rats. Colonic temperature increased from 37.22 +/- 0.21 to 40.68 +/- 0.31 degrees C after 60 min. In six rats injected intracerebroventricularly with 10 microg of the AT(1) antagonist losartan, colonic temperature increased from 37.41 +/- 0.27 to 41.72 +/- 0.28 degrees C after 60 min. This increase was significantly greater than controls (P < 0.03). Losartan-treated rats drank 1.1 +/- 0.4 ml of water compared with 5.9 +/- 0.77 ml (P < 0.002) drank by control animals, despite a similar body weight loss in the two groups. Central losartan did not inhibit the drinking response to intracerebroventricular carbachol in heated rats, suggesting that losartan treatment did not nonspecifically depress behavior. We conclude that central angiotensinergic mechanisms have a role in both thermoregulatory cooling in response to heat exposure and also the ensuing water intake.  相似文献   

8.
Five untrained females having no history of heat exposure worked in a cool (16-20 degrees C db, 28% rh) environment on day 1 and a warm environment on day 2 (45 degrees C db, 28% rh). Exercise level (bicycle ergometer) was 30% of individual Vo2 max values and work time on both days was 45 min. Venous blood samples were obtained at rest, after 40 min of exercise and 25 min after exercise ceased. Analysis of blood samples indicated an 8.3% increase in Hct during exercise on day 1 and a plasma volume reduction of 12.8% though total circulating protein increased 11.5%. Except for K+ all parameters approximated control values within 25 min postexercise. On day 2, exercise in heat caused a 12% increase in Hct and a plasma volume reduction of 17.7%. Mean total protein did not significantly change from resting values. These data indicated that for a given % Vo2 max, untrained females suffer considerably greater reductions in plasma volumes than do exercised males. Similar to males, dilatation of the cutaneous vascular bed in unacclimatized females resulted in loss of protein from the vascular volume.  相似文献   

9.
The physiological changes in male rats during acclimation were studied following direct or stepwise exposure to heat (32.5 degrees C) in a controlled-environment room. The animals were exposed to each temperature for 10 days beginning at 24.5 degrees C and returning to 24.5 degrees C in the reverse order of initial exposure. Relative humidity of 50 +/- 2% and a 12-h light-dark photoperiod (light from 0900 to 2100 h) were maintained. Physiological changes in metabolic rate (MR), evaporative water loss (EWL), plasma corticosterone, body water turnover, and food and water intake were measured. The results indicate a significantly (P less than 0.001) elevated plasma corticosterone and MR in rats exposed directly to heat from control temperature (24.5 degrees C) but not in those animals exposed stepwise via 29.0 degrees C. All kinetic parameters of water pool changed (P less than 0.01) on direct exposure to heat, whereas rats exposed in a stepwise manner increased only pool turnover. In addition, exposure to experimental temperatures resulted in reduced (P less than 0.05) relative food intake and increased (P less than 0.05) water intake. Compared with the control condition of 24.5 degrees C, EWL was significantly (P less than 0.05) elevated when the animals were exposed either directly or in a stepwise fashion to 32.5 degrees C. These data suggest that the response to elevated temperatures is influenced by the temperature to which the rat is acclimated.  相似文献   

10.
The effects of the discontinuation (DET) of an endurance training/heat acclimation (T/A) program on vascular volumes were studied in 16 adult males. Resting and exercise blood volume dynamics were examined prior to and during an exercise task performed after completion of T/A (CT1) and again at the end of DET (CT2). T/A consisted of cycling at 60% of peak VO2 for 90 min per day, 6 days per week, for 4 weeks. Ambient temperature was 20 degrees C for the first 3 weeks and 40 degrees C for the last week (rh = 30-35%). Subjects were randomly assigned to one of the following DET conditions: 1) cycling one day per week at 40 degrees C, 2) cycling one day per week at 20 degrees C, 3) resting one day per week at 40 degrees C, 4) control. The exercise tasks consisted of 60 min of continuous cycle ergometer exercise at 50% of peak VO2 (Ta = 30 degrees C, rh = 35%). Although significant differences were found between CT1 and CT2, there were no interactions between the various DET conditions. Resting red cell volume decreased 98 ml and plasma volume decreased 248 ml following DET. A reduction in plasma protein content accounted for 97% of the decrease in plasma volume. Hemoconcentration occurred during exercise in both CT1 and CT2, while there were slight increases in plasma [Na+] and [Cl-] and a rapid rise in [K+]. It appears that a single exercise and/or heat exposure per week was not different from complete cessation of endurance exercise in the heat with regard to maintenance of the various vascular volumes.  相似文献   

11.
Germinating conidiospores of Neurospora crassa that were exposed to 45 degrees C, a temperature that induces a heat shock response, were protected from injury caused by freezing in liquid nitrogen and subsequent thawing at 0 degrees C. Whereas up to 90% of the control spores were killed by this freezing and slow thawing, a prior heat shock increased cell survival four- to fivefold. Survival was determined by three assays: the extent of spore germination in liquid medium, the number of colonies that grew on solid medium, and dry-weight accumulation during exponential growth in liquid culture. The heat shock-induced protection against freezing injury was transient. Spores transferred to normal growth temperature after exposure to heat shock and before freezing lost the heat shock-induced protection within 30 min. Spores subjected to freezing and thawing stress synthesized small amounts of the heat shock proteins that are synthesized in large quantities by cells exposed to 45 degrees C. Pulse-labeling studies demonstrated that neither chilling the spores to 10 degrees C or 0 degrees C in the absence of freezing nor warming the spores from 0 degrees C to 30 degrees C induced heat shock protein synthesis. The presence of the protein synthesis inhibitor cycloheximide during spore exposure to 45 degrees C did not abolish the protection against freezing injury induced by heat shock. Treatment of the cells with cycloheximide before freezing, without exposure to heat shock, itself increased spore survival.  相似文献   

12.
The aim of this study was to elucidate the interactive effect of central hypovolemia and plasma hyperosmolality on regulation of peripheral vascular response and AVP secretion during heat stress. Seven male subjects were infused with either isotonic (0.9%; NOSM) or hypertonic (3.0%; HOSM) NaCl solution and then heated by perfusing 42 degrees C (heat stress; HT) or 34.5 degrees C water (normothermia; NT) through water perfusion suits. Sixty minutes later, subjects were exposed to progressive lower body negative pressure (LBNP) to -40 mmHg. Plasma osmolality (P(osmol)) increased by approximately 11 mosmol/kgH(2)O in HOSM conditions. The increase in esophageal temperature before LBNP was much larger in HT-HOSM (0.90 +/- 0.09 degrees C) than in HT-NOSM (0.30 +/- 0.07 degrees C) (P < 0.01) because of osmotic inhibition of thermoregulation. During LBNP, mean arterial pressure was well maintained, and changes in thoracic impedance and stroke volume were similar in all conditions. Forearm vascular conductance (FVC) before application of LBNP was higher in HT than in NT conditions (P < 0.001) and was not influenced by P(osmol) within the thermal conditions. The reduction in FVC at -40 mmHg in HT-HOSM (-9.99 +/- 0.96 units; 58.8 +/- 4.1%) was significantly larger than in HT-NOSM (-6.02 +/- 1.23 units; 44.7 +/- 8.1%) (P < 0.05), whereas the FVC response was not different between NT-NOSM and NT-HOSM. Plasma AVP response to LBNP did not interact with P(osmol) in either NT or HT conditions. These data indicate that there apparently exists an interactive effect of P(osmol) and central hypovolemia on the peripheral vascular response during heat stress, or peripheral vasodilated conditions, but not in normothermia.  相似文献   

13.
Five different behaviors of man while in cold ocean water (9-10 degrees C) were assessed for their effect on rate of progress into hypothermia. With subjects wearing lifejackets, two thermally protective behaviors were studied which reduce exposure to the water of areas of body surface with high relative heat loss potential. One was huddling of three persons and the other a self-huddle behavior (HELP or Heat Escape Lessening Posture). These two behaviors resulted in significant reductions of rectal temperature cooling rate of 66 per cent and 69 per cent, respectively, of that of a control behavior. With no flotation available, two survival swimming behaviors (treading water and drownproofing) were shown to result in significant increases in cooling rate to 134 per cent and 182 per cent, respectively, of the control behavior. Potential swimming distance of subjects wearing a life-jacket was 0.85 miles in water near 12 degrees C before predicted incapacitation by hypothermia. It was concluded that behavioral variables can be of major importance in determining survival time in cold water through modulation of cooling rate associated with other variables such as fatness, body size, and clothing.  相似文献   

14.
To determine the effects of acute heat stress, heat acclimation and hypohydration on the gastric emptying rate of water (W) during treadmill exercise, ten physically fit men ingested 400 ml of W before each of three 15 min bouts of exercise (treadmill, approximately 50% VO2max) on five separate occasions. Stomach contents were aspirated after each exercise bout. Before heat acclimation (ACC), experiments were performed in a neutral (18 degrees C), hot (49 degrees C) and warm (35 degrees C) environment. Subjects were euhydrated for all experiments before ACC. After ACC, the subjects completed two more experiments in the warm (35 degrees C) environment; one while euhydrated and a final one while hypohydrated (-5% of body weight). The volume of ingested water emptied into the intestines at the completion of each exercise bout was inversely correlated (P less than 0.01) with the rectal temperature (r = -0.76). The following new observations were made: 1) exercise in a hot (49 degrees C) environment impairs gastric emptying rate as compared with a neutral (18 degrees C) environment, 2) exercise in a warm (35 degrees C) environment does not significantly reduce gastric emptying before or after heat acclimation, but 3) exercise in a warm environment (35 degrees C) when hypohydrated reduces gastric emptying rate and stomach secretions. Reductions in gastric emptying appear to be related to the severity of the thermal strain induced by an exercise/heat stress.  相似文献   

15.
The metabolic, thermal, and cardiovascular responses of two male Caucasians to 1 2 h exposure to ambient temperature ranging between 28 degrees C and 5 degrees C were studied and related to the respective ambient temperatures. The metabolic heat production increased linearly with decreasing ambient temperature, where heat production (kcal times m- minus 2 times h- minus 1) = minus 2.79 Ta degrees C + 103.4, r = -0.97, P smaller than 0.001. During all exposures below 28 degrees C, the rate of decrease in mean skin temperature (Tsk) was found to be an exponential function dependent upon the ambient temperature (Ta) and the time of exposure. Reestablishment of Tsk steady state occurred at 90-120 min of exposure, and the time needed to attain steady state was linearly related to decreasing Ta. The net result was that a constant ratio of 1.5 of the external thermal gradient to the internal thermal gradient was obtained, and at all experimental temperatures, the whole body heat transfer coefficient remained constant. Cardiac output was inversely related to decreasing Ta, where cardiac output (Q) = minus 0.25 Ta degrees C + 14.0, r = minus 0.92, P smaller than 0.01. However, the primary reason for the increased Q, the stroke output, was also described as a third-order polynomial, although the increasing stroke volume throughout the Ta range (28-5 degrees C) was linearly related to decreasing ambients. The non-linear response of this parameter which occurred at 20 degrees C larger than or equal to Ta larger than or equal to 10 degrees C suggested that the organism's cardiac output response was an integration of the depressed heart rate response and the increasing stroke output at these temperatures.  相似文献   

16.
This study was to observe the distribution of body fluid by measuring blood volume, extracellular and intracellular fluid volumes and total body water under heat exposure, in order to clarify the mechanism of decrease in whole blood viscosity of the heat-exposed broilers. Whole blood viscosity, haematocrit, plasma protein concentration, plasma osmolality and extracellular fluid volume decreased during high temperature exposure, while plasma and blood volumes increased. No significant changes were found in both intracellular fluid volume and total body water between thermoneutral and high temperature exposure. These results indicate the decreased whole blood viscosity is induced by a plasma volume expansion, in which water may come from the interstitial space and alimentary tract, under heat exposure.  相似文献   

17.
To develop a reliable procedure for the acute expansion of plasma volume (PV), 26 male volunteers were randomly assigned to either a thermoneutral (25 degrees C and 40% relative humidity) or hot-dry (37 degrees C and 25% relative humidity) environment; subsequently each subject was seated for at least 1 h and then infused intravenously with either 100 or 200 ml of a 25% albumin solution or 0.9% saline. On the day before each infusion, PV was estimated by dye dilution using indocyanine green. Net percent change in PV (using hematocrit and hemoglobin values) was calculated at 1, 3, 6, 9, 12, and 24 h postinfusion. The PV of subjects residing in the heat after a 100-ml saline infusion increased significantly over 1-h values at 6, 9, and 12 h postinfusion but not at 24 h. The same trend, although not significant, was apparent at room temperature. The data suggest a slow isooncotic circadian pattern of PV expansion and contraction. The infusion of hyperoncotic albumin produced rapid expansion of plasma volume. With the low dose (25 g) at 1 h postinfusion, the expansion was 379 +/- 102 ml in the heat and 301 +/- 160 ml at room temperature. With the high dose (50 g) at 1 h postinfusion, the expansion was 479 +/- 84 ml in the heat and 427 +/- 147 ml at room temperature. The high dose produced an expansion that persisted for at least 9 h in subjects in either environment. The data suggest a mechanism for the retention of fluid during heat acclimatization and a useful procedure for plasma volume expansion in humans.  相似文献   

18.
Heat acclimatization improves thermoregulatory responses to heat stress and decreases sweat sodium concentration ([Na(+)](sweat)). The reduced [Na(+)](sweat) results in a larger increase in plasma osmolality (P(osmol)) at a given amount of sweat output. The increase in P(osmol) inhibits thermoregulatory responses to increased body core temperature. Therefore, we hypothesized that the inhibitory effect of plasma hyperosmolality on the thermoregulatory responses to heat stress should be attenuated with the reduction of [Na(+)](sweat) due to heat acclimatization. Eleven subjects (9 male and 2 female) were passively heated by immersing their lower legs into water at 42 degrees C (room temperature 28 degrees C and relative humidity 30%) for 50 min following isotonic or hypertonic saline infusion. We determined the increase in the esophageal temperature (T(es)) required to elicit sweating and cutaneous vasodilation (CVD) (DeltaT(es) thresholds for sweating and CVD, respectively) in each condition and calculated the elevation of the T(es) thresholds per unit increase in P(osmol) as the osmotic inhibition of sweating and CVD. The osmotic shift in the DeltaT(es) thresholds for both sweating and CVD correlated linearly with [Na(+)](sweat) (r = 0.858 and r = 0.628, respectively). Thus subjects with a lower [Na(+)](sweat) showed a smaller osmotic elevation of the DeltaT(es) thresholds for sweating and CVD. These results suggest the possibility that heat acclimatization attenuates osmotic inhibition of thermoregulatory responses as well as reducing [Na(+)](sweat).  相似文献   

19.
Thermoregulatory, cardiovascular, and body fluid responses during exercise in the heat were tested in five middle-aged (48 +/- 2 yr) women before and after 14-23 days of estrogen replacement therapy (ERT). The heat and exercise challenge consisted of a 40-min rest period followed by semirecumbent cycle exercise (approximately 40% maximal O2 uptake) for 60 min. At rest, the ambient temperature was elevated from a thermoneutral (dry bulb temperature 25 degrees C; wet bulb temperature 17.5 degrees C) to a warm humid (dry bulb temperature 36 degrees C; wet bulb temperature 27.5 degrees C) environment. Esophageal (Tes) and rectal (Tre) temperatures were measured to estimate body core temperature while arm blood flow and sweating rate were measured to assess the heat loss response. Mean arterial pressure and heart rate were measured to evaluate the cardiovascular response. Blood samples were analyzed for hematocrit (Hct), hemoglobin ([Hb]), plasma 17 beta-estradiol (E2), progesterone (P4), protein, and electrolyte concentrations. Plasma [E2] was significantly (P < 0.05) elevated by ERT without affecting the plasma [P4] levels. After ERT, Tes and Tre were significantly (P < 0.05) depressed by approximately 0.5 degrees C, and the Tes threshold for the onset of arm blood flow and sweating rate was significantly (P < 0.05) lower during exercise. After ERT, heart rate during exercise was significantly lower (P < 0.05) without notable variation in mean arterial pressure. Isotonic hemodilution occurred with ERT evident by significant (P < 0.05) reductions in Hct and [Hb], whereas plasma tonicity remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study assessed reduction in expiratory function in 12 asthmatic subjects both after 5 min of cold air provocation (CAP) with dry air conditioned to approximately 0 degrees C and after exercise (to 85% of predicted maximum heart rate) while breathing ambient room air (approximately 21 degrees C and 40% relative humidity). These assessments were done both before and after the following training protocol. Three 5-min periods of isocapnic cold air hyperpnea separated by 5-min rest periods were performed breathing 0 degrees to -10 degrees C air, for 36 sessions over 12 wk. As expected, pretraining expiratory function was significantly reduced (P less than 0.001) after both CAP and exercise. The posttraining reduction in expiratory function after CAP and exercise, however, was significantly less pronounced (largest P less than 0.05). These data support our hypothesis that repeated bouts of cold air challenge result in airway acclimatization to cold air and consequent decrease in exercise-induced bronchospasm. Acclimatization may result directly either by habituation of the airways or by vasodilation leading to increased bronchial blood flow and consequent reduced airway cooling. An unanticipated finding, though, is that repeated cold air challenge may also cause long-term inflammatory changes in the airways. A significant percentage of subjects experienced reduced base-line pulmonary function and overall exacerbation of asthma symptoms during the training period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号