共查询到20条相似文献,搜索用时 31 毫秒
1.
A proteinase from human erythrocyte membranes 总被引:7,自引:0,他引:7
G L Moore W F Kocholaty D A Cooper J L Gray S L Robinson 《Biochimica et biophysica acta》1970,212(1):126-133
2.
3.
A low-calcium-requiring calcium-activated neutral proteinase (mu CANP) has been purified to homogeneity from human placenta. The purification procedure includes chromatography on DEAE-cellulose, Ultrogel AcA-22 and DEAE-Sephadex in succession. The purified mu CANP is a thiol proteinase and requires calcium for activity. Half-maximal activation occurs at 40 microM calcium. It is a heterodimer with subunits of 74 kDa and 32 kDa. (The placental mCANP has subunits of 70 kDa and 32 kDa.) Mn2+ or Sr2+, in combination with Ca2+, activates the enzyme synergistically. The presence of both mCANP and mu CANP in equal proportion in human placenta is reported for the first time. This will facilitate a comparative study of these two forms of human calcium-activated neutral proteinase, especially their physiological structural and functional interrelationship. Maximal activation of the autolysed mCANP occurs at a calcium concentration much higher than that for mu CANP; and this autolysed mCANP does not cross-react with antiserum against mu CANP, suggesting that the two forms of proteinase are independent species. 相似文献
4.
GCDFP-15 (gross cystic disease fluid protein, 15 kDa) is a secretory marker of apocrine differentiation in breast carcinoma. In human breast cancer cell lines, gene expression is regulated by hormones, including androgens and prolactin. The protein is also known under different names in different body fluids such as gp17 in seminal plasma. GCDFP-15/gp17 is a ligand of CD4 and is a potent inhibitor of T-cell apoptosis induced by sequential CD4/T-cell receptor triggering. We now report that GCDFP-15/gp17 is a protease exhibiting structural properties relating it to the aspartyl proteinase superfamily. Unexpectedly, GCDFP-15/gp17 appears to be related to the retroviral members rather than to the known cellular members of this class. Site-specific mutagenesis of Asp(22) (predicted to be catalytically important for the active site) and pepstatin A inhibition confirmed that the protein is an aspartic-type protease. We also show that, among the substrates tested, GCDFP-15/gp17 is specific for fibronectin. The study of GCDFP-15/gp17-mediated proteolysis may provide a handle to understand phenomena as diverse as mammary tumor progression and fertilization. 相似文献
5.
Maria Luiza V. Oliva Mariana C.C. SilvaRoberto C. Sallai Marlon V. BritoMisako U. Sampaio 《Biochimie》2010
Kunitz-type trypsin inhibitors from legume seeds have been characterized structurally. The presence of Cys–Cys in single or double chains shows a new pattern of proteins structurally not so closely related to STI. Therefore, briefly, with regard to cysteine content, plant Kunitz proteinase inhibitors may be classifed into four groups: no Cys–Cys at all, one, two and more than two Cys residues. Functional properties and diversity of these proteins are also briefly discussed. 相似文献
6.
Thiol proteinase inhibitors are crucial to proper functioning of all living tissues consequent to their cathepsin regulatory and myriad important biologic properties. Equilibrium denaturation of dimeric goat pancreas thiol proteinase inhibitor (PTPI), a cystatin superfamily variant has been studied by monitoring changes in the protein's spectroscopic and functional characteristics. Denaturation of PTPI in guanidine hydrochloride and urea resulted in altered intrinsic fluorescence emission spectrum, diminished negative circular dichroism, and loss of its papain inhibitory potential. Native like spectroscopic properties and inhibitory activity are only partially restored when denaturant is diluted from guanidine hydrochloride unfolded samples demonstrating that process is partially reversible. Coincidence of transition curves and dependence of transition midpoint (3.2M) on protein concentration in guanidine hydrochloride‐induced denaturation are consistent with a two‐state model involving a native like dimer and denatured monomer. On the contrary, urea‐induced unfolding of PTPI is a multiphasic process with indiscernible intermediates. The studies demonstrate that functional conformation and stability are governed by both ionic and hydrophobic interactions. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 708–717, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
7.
James F. Hare 《Biochemical and biophysical research communications》1978,83(3):1206-1215
Mitochondrial inner membranes catalyzed the endoproteolytic release of radioactively labelled polypeptide fragments of 125I labelled insulin covalently attached to agarose beads. Demonstration of this proteolytic activity was dependent upon detergent and inhibited by a variety of proteinase and sulfhydryl group inhibitors. Unlike three previously described peripheral mitochondrial proteinases, the insulin hydrolyzing mitochondrial proteinase was resistent to extraction with high salt but solubilized with a non-ionic detergent, indicating its integral association with the membrane. 相似文献
8.
An acid proteinase has been detected in culture supernate of the 9.2.27 murine hybridoma. This enzyme extensively degrades albumin and transferrin during short incubations at pH 3 and below. Limited proteolysis of the 9.2.27 IgG2a appears to occur in the culture supernate. Proteolysis is enhanced at low pH in the presence of urea or 1 M acetic acid. The proteinase activity accumulates in continuous perfusion, total cell recycle cultures, beginning during exponential growth of the hybridoma. It is destroyed by boiling and blocked by pepstatin, but not by inhibitors of cysteine or serine proteinases or by EDTA. The low pH optimum may distinguish this enzyme from the known rat and mouse aspartic acid proteinases including cathepsin D and cathepsin E.A preliminary report of these findings was presented at the 196th National Meeting, American Chemical Society, Los Angeles, September 25–30, 1988; paper #140, Division of Microbial and Biochemical Technology. 相似文献
9.
10.
Pace J 《The Biochemical journal》1931,25(5):1485-1490
11.
12.
Cysteine proteinase inhibitor (CPI) forms from human liver were purified from the tissue homogenate by alkaline denaturation of cysteine proteinases with which they are complexed, acetone fractionation, affinity chromatography on S-carboxymethyl-papain-Sepharose and chromatofocusing. The multiple forms of CPI were shown immunologically to be forms of two proteins, referred to as CPI-A (comprising the forms of relatively acidic pI) and CPI-B (comprising the more basic forms). CPI-A and CPI-B are similar in their Mr of about 12400, considerable stability to pH2, pH11 and 80 degrees C, and tight-binding inhibition of papain, several related cysteine proteinases and dipeptidyl peptidase I. Ki values were determined for papain, human cathepsins B, H and L, and dipeptidyl peptidase I. The affinity of CPI-A for cathepsin B was about 10-fold greater than that of CPI-B, whereas CBI-B showed about 100-fold stronger inhibition of dipeptidyl peptidase I. For all the cysteine proteinases the liver inhibitors were somewhat less tight binding than cystatin. The resemblance of both CPI-A and CPI-B in several respects to egg-white cystatin is discussed. CPI-A seems to correspond to the epithelial inhibitor described previously, and CPI-B to the inhibitor from other cell types [Järvinen & Rinne (1982) Biochim. Biophys. Acta 708, 210-217]. 相似文献
13.
Dolashka-Angelova P Stoeva S Voelter W 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2000,127(1):11-19
Three distinct DNA polymerase fractions (A, B and C), were isolated from Trypanosoma cruzi epimastigote forms. Fraction A is a low molecular mass enzyme corresponding to beta-like DNA polymerase of T. cruzi. Fraction B co-purified along several purification steps with fraction A, but in the last step it was clearly separated by a phosphocellulose chromatography. Fraction C was separated from fractions A and B by binding to DEAE-cellulose column, since the other two fractions were eluted in the flowthrough. This enzyme has an apparent native molecular mass of 100 kDa and showed a high preference for poly(dC)-oligo(dG) among different template-primers tested as substrate. Western-blot and biochemical analysis strongly suggest that the three DNA polymerase fractions correspond to different molecular entities. These results are in agreement with the idea that fraction C is a new DNA polymerase of T. cruzi, not described before. 相似文献
14.
The NIa proteinase from pepper vein banding virus (PVBV) is a sequence-specific proteinase required for processing of viral polyprotein in the cytoplasm. It accumulates in the nucleus of the infected plant cell and forms inclusion bodies. The function of this protein in the nucleus is not clear. The purified recombinant NIa proteinase was active, and the mutation of the catalytic residues His-46, Asp-81, and Cys-151 resulted in complete loss of activity. Most interesting, the PVBV NIa proteinase exhibited previously unidentified activity, namely nonspecific double-stranded DNA degradation. This DNase activity of the NIa proteinase showed an absolute requirement for Mg(2+). Site-specific mutational analysis showed that of the three catalytic residues, Asp-81 was the crucial residue for DNase activity. Mutation of His-46 and Cys-151 had no effect on the DNase activity, whereas mutant D81N was partially active, and D81G was completely inactive. Based on kinetic analysis and molecular modeling, a metal ion-dependent catalysis similar to that observed in other nonspecific DNases is proposed. Similar results were obtained with glutathione S-transferase-fused PVBV NIa proteinase and tobacco etch virus NIa proteinase, confirming that the DNase function is an intrinsic property of potyviral NIa proteinase. The NIa protein present in the infected plant nuclear extract also showed the proteinase and the DNase activities, suggesting that the PVBV NIa protein that accumulates in the nucleus late in the infection cycle might serve to degrade the host DNA. Thus the dual function of the NIa proteinase could play an important role in the life cycle of the virus. 相似文献
15.
16.
《Enzyme and microbial technology》2005,36(2-3):357-361
A novel proteinase A inhibitor was purified from Ganoderma lucidum. The purification was carried out by ethanol precipitation (50–80%), ACA44 gel filtration and Source 30Q anion exchange, respectively. The molecular mass of the inhibitor was 38 kDa as estimated via SDS-PAGE and gel filtration. Its carbohydrate content was up to 70%. β-Elimination revealed that the linkage between the glycan and the core protein backbone might be O-linkage. This inhibitor showed a remarkable heat stability. By investigating the interaction between this inhibitor and a variety of proteinases, it is indicated that the inhibitor was more specific against yeast proteinase A than other proteinases. The dissociation constants (Ki) and concentration required for 50% inhibition (IC50) for proteinase A were 2.7 × 10−6 M and 0.16 mg/ml, respectively. 相似文献
17.
Affinity purification of the novel cysteine proteinase papaya proteinase IV, and papain from papaya latex. 总被引:1,自引:1,他引:1 下载免费PDF全文
D J Buttle A A Kembhavi S L Sharp R E Shute D H Rich A J Barrett 《The Biochemical journal》1989,261(2):469-476
A procedure is described for the purification of a previously undetected cysteine proteinase, which we have called papaya proteinase IV, from spray-dried latex of the papaya (Carica papaya) plant. The purification involves affinity chromatography on Gly-Phe-aminoacetonitrile linked to CH-Sepharose 4B, with elution by 2-hydroxyethyl disulphide at pH 4.5. The product thus obtained is a mixture of almost fully active papain and papay proteinase IV, which are then separated by cation-exchange chromatography. A preliminary characterization of papaya proteinase IV showed it to be very similar to chymopapain in both molecular size and charge. However, the new enzyme is immunologically distinct from the previously characterized cysteine proteinases of papaya latex. It also differs in its lack of activity against the synthetic substrates of the other papaya proteinases, in its narrow specificity against protein substrates and its lack of inhibition by chicken cystatin. Papaya proteinase IV is abundant, contributing almost 30% of the protein in spray-dried papaya latex, and contamination of chymopapain preparations with this enzyme may account for some of the previously reported heterogeneity of chymopapain. 相似文献
18.
Isolation and characterization of alpha2-plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator-induced clot lysis. 总被引:16,自引:0,他引:16
A procedure is presented for purifying a novel proteinase inhibitor in human plasma whose apparent unique biological property is to inhibit efficiently the lysis of fibrin clots induced by plasminogen activator. The final product is homogeneous as judged by disc gel electrophoresis, and immunoelectrophoresis. Its molecular weight estimated by sodium dodecyl sulfate gel electrophoresis or sedimentation equilibrium is 67,000 and 63,000, respectively. The inhibitor is a glycoprotein consisting polypeptide chain containing 11.7% carbohyrate. It migrates in the alpha2-globulin region in immunoelectrophoresis. The inhibitor is chemically and immunologically different from all the other known inhibitors in plasma. Inhibition of plasmin by the inhibitor is almost instantaneous even at 0 degrees, in contrast to the slow inhibition of urokinase (plasminogen activator in urine). Plasminogen activation by urokinase-induced clot lysis is inhibited by the inhibitor mainly through a mechanism of instantaneous inhibition of plasmin formed and not through the inhibition of urokinase. The inhibitor also inhibits trypsin. Consequently, it is suggested that this newly identified inhibitor is named alpha2-plasmin inhibitor or alpha2-proteinase inhibitor. A specific antibody directed against the inhibitor neutralizes virtually all inhibitory activity of plasma to activator-induced clot lysis. Immunochemical quantitation of the inhibitor was specific antiserum to the inhibitor and the purified inhibitor as a standard indicates that the concentration of the inhibitory in the serum of a healthy man is in or near the range of 5 to 7 mg/100 ml, which is the lowest concentration among the concentration of the proteinase inhibitors in plasma. The inhibitor and plasmin, trypsin, or urokinase form a complex which cannot be dissociated with denaturing and reducing agents. The formation of the enzyme-inhibitor complex occurs on a 1:1 molar basis and is associated with the cleavage of a unique peptide bone, which is most clearly demonstrated in the interaction of the inhibitor and beta-trypsin. In the complex formation between the inhibitor and plasmin, the inhibitor is cross-linked with the light chain which contains the active site of plasmin. It is suggested that, in a fashion analogous to complex formation between alpha1-antitrypsin and trypsin, the cross-links are formed between the active site serine of the enzyme and the newly formed COOH-terminal residue of the inhibitor, with cleavage of a peptide bond. 相似文献
19.
A calcium-activated neutral proteinase has been purified to homogeneity from human placenta. The purified enzyme is a dimer composed of Mr 73 000 and 30 000 subunits. Half-maximal activity is observed at 250 microM Ca2+. It requires reduced sulfhydryl groups and neutral pH for optimal activity. Leupeptin, antipain, E-64, sulfhydryl-blocking agents and endogenous proteinase inhibitor inhibit the purified enzyme. This paper is the first to describe the purification and characterization of a calcium-activated neutral proteinase from a human non-muscular parenchymatous organ. 相似文献
20.
A novel proteinaceous inhibitor for the metalloproteinase of Streptomyces caespitosus has been isolated from the culture supernatant of Streptomyces sp. I-355. It was named ScNPI (Streptomyces caespitosus neutral proteinase inhibitor). ScNPI exhibited strong inhibitory activity toward ScNP with a K(i) value of 1.6 nm. In addition, ScNPI was capable of inhibiting subtilisin BPN' (K(i) = 1.4 nm) (EC ). The scnpi gene consists of two regions, a signal peptide (28 amino acid residues) and a mature region (113 amino acid residues, M(r) = 11,857). The deduced amino acid sequence of scnpi showed high similarity to those of Streptomyces subtilisin inhibitor (SSI) and its homologues. The reactive site of ScNPI for inhibition of subtilisin BPN' was identified to be Met(71)-Tyr(72) bond by specific cleavage. To identify the reactive site for ScNP, Tyr(33) and Tyr(72), which are not conserved among other SSI family inhibitors but are preferable amino acid residues for ScNP, were replaced separately by Ala. The Y33A mutant retained inhibitory activity toward subtilisin BPN' but did not show any inhibitory activity toward ScNP. Moreover, a dimer of ternary complexes among ScNPI, ScNP, and subtilisin BPN' was formed to give the 2:2:2 stoichiometry. These results strongly indicate that ScNPI is a double-headed inhibitor that has individual reactive sites for ScNP and subtilisin BPN'. 相似文献