首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides derived from hydrolysis of αS1-casein(f1-9) [αS1-CN(f1-9)] and β-CN(f193-209) with cell extracts of Lactobacillus helveticus CNRZ32 and single-peptidase mutants (ΔpepC, ΔpepE, ΔpepN, ΔpepO, and ΔpepX) were isolated by using reverse-phase high-performance liquid chromatography and were characterized by mass spectrometry. The peptides identified suggest that there was activity of an endopeptidase, distinct from previously identified endopeptidases (PepE and PepO), with specificity for peptide bonds C terminal to Pro residues. Identification of hydrolysis products derived from a carboxyl-blocked form of β-CN(f193-209) confirmed that the peptides were derived from the activity of an endopeptidase.  相似文献   

2.
Genes encoding three putative endopeptidases were identified from a draft-quality genome sequence of Lactobacillus helveticus CNRZ32 and designated pepO3, pepF, and pepE2. The ability of cell extracts from Escherichia coli DH5alpha derivatives expressing CNRZ32 endopeptidases PepE, PepE2, PepF, PepO, PepO2, and PepO3 to hydrolyze the model bitter peptides, beta-casein (beta-CN) (f193-209) and alpha(S1)-casein (alpha(S1)-CN) (f1-9), under cheese-ripening conditions (pH 5.1, 4% NaCl, and 10 degrees C) was examined. CNRZ32 PepO3 was determined to be a functional paralog of PepO2 and hydrolyzed both peptides, while PepE and PepF had unique specificities towards alpha(S1)-CN (f1-9) and beta-CN (f193-209), respectively. CNRZ32 PepE2 and PepO did not hydrolyze either peptide under these conditions. To demonstrate the utility of these peptidases in cheese, PepE, PepO2, and PepO3 were expressed in Lactococcus lactis, a common cheese starter, using a high-copy vector pTRKH2 and under the control of the pepO3 promoter. Cell extracts of L. lactis derivatives expressing these peptidases were used to hydrolyze beta-CN (f193-209) and alpha(S1)-CN (f1-9) under cheese-ripening conditions in single-peptide reactions, in a defined peptide mix, and in Cheddar cheese serum. Peptides alpha(S1)-CN (f1-9), alpha(S1)-CN (f1-13), and alpha(S1)-CN (f1-16) were identified from Cheddar cheese serum and included in the defined peptide mix. Our results demonstrate that in all systems examined, PepO2 and PepO3 had the highest activity with beta-CN (f193-209) and alpha(S1)-CN (f1-9). Cheese-derived peptides were observed to affect the activity of some of the enzymes examined, underscoring the importance of incorporating such peptides in model systems. These data indicate that L. helveticus CNRZ32 endopeptidases PepO2 and PepO3 are likely to play a key role in this strain's ability to reduce bitterness in cheese.  相似文献   

3.
Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine alpha(S1)-casein (alpha(S1)-CN) 24-47 fragment (f24-47), f169-193, and beta-CN f58-76; ovine alpha(S1)-CN f1-6 and alpha(S2)-CN f182-185 and f186-188; caprine beta-CN f58-65 and alpha(S2)-CN f182-187; buffalo beta-CN f58-66; and a mixture of three tripeptides originating from human beta-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 micro g/ml (100 micro mol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC(50)) of some of the crude peptide fractions was very low (16 to 100 micro g/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC(50)s were confirmed. An antibacterial peptide corresponding to beta-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 micro g/ml. Once generated, the bioactive peptides were resistant to further degradation by proteinase of L. helveticus PR4 or by trypsin and chymotrypsin.  相似文献   

4.
Genes encoding three putative endopeptidases were identified from a draft-quality genome sequence of Lactobacillus helveticus CNRZ32 and designated pepO3, pepF, and pepE2. The ability of cell extracts from Escherichia coli DH5α derivatives expressing CNRZ32 endopeptidases PepE, PepE2, PepF, PepO, PepO2, and PepO3 to hydrolyze the model bitter peptides, β-casein (β-CN) (f193-209) and αS1-casein (αS1-CN) (f1-9), under cheese-ripening conditions (pH 5.1, 4% NaCl, and 10°C) was examined. CNRZ32 PepO3 was determined to be a functional paralog of PepO2 and hydrolyzed both peptides, while PepE and PepF had unique specificities towards αS1-CN (f1-9) and β-CN (f193-209), respectively. CNRZ32 PepE2 and PepO did not hydrolyze either peptide under these conditions. To demonstrate the utility of these peptidases in cheese, PepE, PepO2, and PepO3 were expressed in Lactococcus lactis, a common cheese starter, using a high-copy vector pTRKH2 and under the control of the pepO3 promoter. Cell extracts of L. lactis derivatives expressing these peptidases were used to hydrolyze β-CN (f193-209) and αS1-CN (f1-9) under cheese-ripening conditions in single-peptide reactions, in a defined peptide mix, and in Cheddar cheese serum. Peptides αS1-CN (f1-9), αS1-CN (f1-13), and αS1-CN (f1-16) were identified from Cheddar cheese serum and included in the defined peptide mix. Our results demonstrate that in all systems examined, PepO2 and PepO3 had the highest activity with β-CN (f193-209) and αS1-CN (f1-9). Cheese-derived peptides were observed to affect the activity of some of the enzymes examined, underscoring the importance of incorporating such peptides in model systems. These data indicate that L. helveticus CNRZ32 endopeptidases PepO2 and PepO3 are likely to play a key role in this strain's ability to reduce bitterness in cheese.  相似文献   

5.
Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of beta-casein (beta-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of beta-CN f7-14, f47-52, and f169-175 and kappa-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the beta-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC(50)s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC(50)s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin.  相似文献   

6.
β-CN(f193–209), a hydrophobic peptide of 17 residues obtained from the chymosin hydrolyzate of β-casein, had little emulsifying activity (EA) at a neutral pH. When mixed with a hydrophilic glycomacropeptide (GMP) derived from κ-casein however, the EA of β-CN(f193-209) increased greatly. The mixing ratio of the peptides affected the EA as well as the adsorption of the peptides to oil droplets. Scanning electron microscopy indicated that the peptide film surrounding the emulsified oil droplets was thick and rough compared to the protein film. An amphipathic structure formed by some interaction between the hydrophilic GMP and the hydrophobic β-CN(f193-209) might contribute to the formation of the thick peptide film and stabilize the emulsified oil.  相似文献   

7.
8.
The antigenic determinants of bovine beta-casein (beta-CN) were localized by using twenty overlapping peptides encompassing the entire sequence of beta-CN and anti-beta-CN antisera from outbred mouse, rabbit and goat. The profile of the reactions was characteristic to the species, the dominant antigenic regions being 80-95, 143-158 and 195-209 in mouse, 1-16 in rabbit and 100-115 in goat. Regions 1-16, 100-115, 121-136 and 143-158 were antigenic in all three species. The number of antigenic regions recognized by goat was much fewer than that by mouse and rabbit, possibly because of the homology between bovine and goat beta-CN. A mixture of the twenty peptides could absorb about 50-60% of beta-CN specific antibodies from each species. Furthermore, the mouse and rabbit anti-beta-CN antibodies were also specific to the phosphorylated regions. We therefore conclude that the major antigenic determinants on beta-CN would be largely sequential and include the phosphorylated sites.  相似文献   

9.
The carbohydrate moieties of glycosphingolipids from eggs of the human parasite, Schistosoma mansoni, were enzymatically released, labelled with 2-aminopyridine (PA), fractionated and analysed by linkage analysis, partial hydrolysis, enzymatic cleavage, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-electrospray ionization mass spectrometry. Apart from large, highly fucosylated structures with five to seven HexNAc residues, we found short, oligofucosylated species containing three to four HexNAc residues. Their structures have been determined as Fuc(alpha1-3)GalNAc(beta1-4)[ +/- Fuc (alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4) Glc-PA, Fuc(alpha1-3)GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-4) GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, and Fuc(alpha1-3) GalNAc(beta1-4)[ +/- Fuc(alpha1-2) +/- Fuc(alpha1-2)Fuc(alpha1-3)]Glc NAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA. The last structure exhibits a trifucosyl sidechain previously identified on the cercarial glycocalyx. These structures stress the importance of 3-fucosylated GalNAc as a terminal epitope in schistosome glycoconjugates. To what degree these glycans contribute to the pronounced antigenicity of S. mansoni egg glycolipids remains to be determined. In addition, we have identified the compounds GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3) GalNAc (beta1-4)Glc-PA, the latter of which is a Lewis X-pentasaccharide identical to that present on cercarial glycolipids, as well as Gal(beta1-3)GalNAc(1-4)Gal(1-4)Glc-PA, which corresponds to asialogangliotetraosylceramide and is most probably derived from the mammalian host.  相似文献   

10.
Enhanced production of 5,8,11-eicosatrienoic acid (Mead acid, 20:3(omega)9) was attained by a mutant fungus, Mortierella alpina M209-7, derived from (Delta)12 desaturase-defective M. alpina Mut48. The 20:3(omega)9 production by M209-7 was 1.3 times greater than that by its parent strain, Mut48. This is thought to be due to its enhanced (Delta)6 desaturation activity, which was 1.4 times higher than that of Mut48. In both strains, 87 to 88% of the total lipids comprised triacylglycerol (TG) and 85% of 20:3(omega)9 was contained in TG. On optimization of the culture conditions for M209-7, earlier glucose feeding and shifting of the growth temperature from 28 to 19(deg)C on the second day were shown to be effective. Under the optimal conditions with a 10-liter jar fermentor, 20:3(omega)9 production reached 1.65 g/liter of culture medium (corresponding to 118 mg/g of dry mycelia and 28.9% of total fatty acids), which is about twice that reported previously (0.8 g/liter).  相似文献   

11.
Tumor progression may be controlled by various fragments derived from noncollagenous 1 (NC1) C-terminal domains of type IV collagen. We demonstrated previously that a peptide sequence from the NC1 domain of the alpha3(IV) collagen chain inhibits the in vitro expression of matrix metalloproteinases in human melanoma cells through RGD-independent binding to alpha(v)beta(3) integrin. In the present paper, we demonstrate that in a mouse melanoma model, the NC1 alpha3(IV)-(185-203) peptide inhibits in vivo tumor growth in a conformation-dependent manner. The decrease of tumor growth is the result of an inhibition of cell proliferation and a decrease of cell invasive properties by down-regulation of proteolytic cascades, mainly matrix metalloproteinases and the plasminogen activation system. A shorter peptide comprising the seven N-terminal residues 185-191 (CNYYSNS) shares the same inhibitory profile. The three-dimensional structures of the CNYYSNS and NC1 alpha3(IV)-(185-203) peptides show a beta-turn at the YSNS (188-191) sequence level, which is crucial for biological activity. As well, the homologous MNYYSNS heptapeptide keeps the beta-turn and the inhibitory activity. In contrast, the DNYYSNS heptapeptide, which does not form the beta-turn at the YSNS level, is devoid of inhibitory activity. Structural studies indicate a strong structure-function relationship of the peptides and point to the YSNS turn as necessary for biological activity. These peptides could act as potent and specific antitumor antagonists of alpha(v)beta(3) integrin in melanoma progression.  相似文献   

12.
Two distinct domains with antibacterial activity were isolated from a peptic hydrolysate of bovine alpha(s2)-casein. The digested alpha(s2)-casein was fractionated by cation-exchange chromatography, after which the peptides in the two active fractions obtained were separated by high-performance liquid chromatography and sequenced by electrospray-ionization tandem mass spectrometry. The major component in each active fraction, f(183-207) and f(164-179), was further purified and the antibacterial activity of these components was tested against several microorganisms. Depending on the target bacterial strain, these peptides exhibited minimum inhibitory concentrations between 8 and 99 microM. Peptide f(183-207) exhibited a consistently higher antibacterial activity than f(164-179), although both peptides showed a comparable hemolytic effect. A method of in situ enzymatic hydrolysis on a cation-exchange membrane to obtain a fraction enriched in the most active antibacterial domain is presented. The antibacterial and hemolytic activities are discussed in relation to the structure and hydrophobicity of the peptides.  相似文献   

13.
α-Casein group of proteins makes up to 65% of the total casein and consists of αS1- casein, αS2- casein and other related proteins. Among all the proteases employed, chymotryptic peptides showed maximum inhibition for angiotensin converting enzyme (ACE). The degree of hydrolysis and release kinetics of the peptides during chymotrypsin hydrolysis was compared with biological activity and the potent peptides fractions were identified. The crude fraction obtained after 110 min of hydrolysis shows multifunctional activities, like ACE inhibition, antioxidant activity, prolyl endopeptidase inhibitory activity and antimicrobial activities. This fraction was further purified by HPLC and sequenced by mass spectra. This fraction constituted peptides with molecular weights of 1,205, 1,718 Da respectively. The sequencing of peptides by MALDI-TOF MS/MS shows sequences QKALNEINQF and TKKTKLTEEEKNRL from α-S2 casein.  相似文献   

14.
Tauzin J  Miclo L  Gaillard JL 《FEBS letters》2002,531(2):369-374
Angiotensin-I-converting enzyme (ACE) inhibitory activity of a tryptic digest of bovine alpha(S2)-casein (alpha(S2)-CN) was extensively investigated. Forty-three peptide peaks were isolated and tested. Seven casokinins (i.e. CN-derived ACE inhibitory peptides) were identified and their IC50 values were determined. Four peptides exhibited an IC50 value lower than 20 microM. Peptides alpha(S2)-CN (f174-181) and alpha(S2)-CN (f174-179) had IC50 values of 4 microM. Surprisingly, deletion of the C-terminal dipeptide of two of these casokinins did not significantly alter their inhibitory activity.  相似文献   

15.
Casein phosphopeptides beta-CN(1-25)4P and alpha(s1)-CN(59-79)5P, from beta- and alpha(s1)-casein, respectively, both carrying the characteristic 'acidic motif' Ser(P)-Ser(P)-Ser(P)-Glu-Glu, were chemically synthesized and administered to HT-29 cells differentiated in culture, which are a used model of intestinal epithelium for absorption studies. Both casein phosphopeptides caused an increase of [Ca(2+)](i) due to influx of extracellular Ca(2+). The response was quantitatively higher with beta-CN(1-25)4P than alpha(s1)-CN(59-79)5P. The synthetic peptide corresponding to the 'acidic motif' was ineffective and the dephosphorylated form of beta-CN(1-25)4P almost inactive. The lack of the N-terminally located five amino acids, or sequence modifications within the N-terminal segment of beta-CN(1-25)4P, caused a total loss of activity, whereas the lack of the C-terminal segment preserved activity. In conclusion, the influx of calcium into HT-29 cells caused by beta-CN(1-25)4P appears to depend on the phosphorylated 'acidic motif' and the preceding N-terminal region.  相似文献   

16.
Two closely related Cl(-)-activated arginyl aminopeptidases (I and II) were purified from a soluble extract of postmortem human cerebral cortex by anion-exchange chromatography and preparative gel electrophoresis. The electrophoretic mobility of II was approximately 80% that of I; the molecular mass of both enzymes was approximately 70 kilodaltons (kDa) (gel filtration). The aminopeptidase action of I and II on aminoacyl-7-amido-4-methylcoumarin (AMC) substrates was restricted to the Arg and Lys derivatives. Both enzymes had significant endopeptidase activity, hydrolysing several biologically active peptides including neurotensin, bradykinin, angiotensin-I, substance P, luliberin, and somatostatin at internal bonds. Other peptides [Leu-enkephalin, proctolin, thyroliberin, adrenocorticotropin18-39 (ACTH18-39), ACTH11-24, and dynorphin (1-13)] were not appreciably hydrolysed. The amino- and endopeptidase activities had pH optima at 6.5 and 7, respectively, and were both inhibited by metal ion chelators and sulphydryl group blocking agents. The aminopeptidase activity was stimulated 20-fold by Cl- ions, whereas the endopeptidase activity was unaffected by the latter. Km values for neurotensin degradation were 20 microM (I) and 37 microM (II) and for Arg-AMC hydrolysis they were 167 microM (I) and 125 microM (II). The endopeptidase activity was not inhibited by the aminopeptidase inhibitors arphamenine or bestatin (IC50 = 9 nM and 0.1 microM, respectively, with Arg-AMC substrate).  相似文献   

17.
Casein phosphopeptides (CPPs) form aggregated complexes with calcium phosphate and induce Ca2+ influx into HT-29 cells that have been shown to be differentiated in culture. The relationship between the aggregation of CPPs assessed by laser light scattering and their biological effect was studied using the CPPs beta-CN(1-25)4P and alpha(s1)-CN(59-79)5P, the commercial mixture CPP DMV, the 'cluster sequence' pentapeptide, typical of CPPs, and dephosphorylated beta-CN(1-25)4P, [beta-CN(1-25)0P]. The biological effect was found to be: (a) maximal with beta-CN(1-25)4P and null with the 'cluster sequence'; (b) independent of the presence of inorganic phosphate; and (c) maximal at 4 mmol.L(-1) Ca2+. The aggregation of CPP had the following features: (a) rapid occurrence; (b) maximal aggregation by beta-CN(1-25)4P with aggregates of 60 nm hydrodynamic radius; (c) need for the concomitant presence of Ca2+ and CPP for optimal aggregation; (d) lower aggregation in Ca2+-free Krebs/Ringer/Hepes; (e) formation of bigger aggregates (150 nm radius) with beta-CN(1-25)0P. With both beta-CN(1-25)4P and CPP DMV, the maximum biological activity and degree of aggregation were reached at 4 mmol.L(-1) Ca2+.  相似文献   

18.
We conducted a deletion analysis of two regions identified in the II-III loop of alpha(1S), residues 671-690, which were shown to bind to ryanodine receptor type 1 (RyR1) and stimulate RyR1 channels in vitro, and residues 720-765 or the narrower 724-743 region, which confer excitation-contraction (EC) coupling function to chimeric dihydropyridine receptors (DHPRs). Deletion mutants were expressed in dysgenic alpha(1S)-null myotubes and analyzed by voltage-clamp and confocal fluo-4 fluorescence. Immunostaining of the mutant subunits using an N-terminus tag revealed abundant protein expression in all cases. Furthermore, the maximum recovered charge movement density was >80% of that recovered by full-length alpha(1S) in all cases. Delta671-690 had no effect on the magnitude of voltage-evoked Ca(2+) transients or the L-type Ca(2+) current density. In contrast, Delta720-765 or Delta724-743 abolished Ca(2+) transients entirely, and L-type Ca(2+) current was reduced or absent. Surprisingly, Ca(2+) transients and Ca(2+) currents of a moderate magnitude were recovered by the double deletion mutant Delta671-690/Delta720-765. A simple explanation for this result is that Delta720-765 induces a conformation change that disrupts EC coupling, and this conformational change is partially reverted by Delta671-690. To test for Ca(2+)-entry independent EC coupling, a pore mutation (E1014K) known to entirely abolish the inward Ca(2+) current was introduced. alpha(1S) Delta671-690/Delta720-765/E1014K expressed Ca(2+) transients with Boltzmann parameters identical to those of the Ca(2+)-conducting double deletion construct. The data strongly suggest that skeletal-type EC coupling is not uniquely controlled by alpha(1S) 720-765. Other regions of alpha(1S) or other DHPR subunits must therefore directly contribute to the activation of RyR1 during EC coupling.  相似文献   

19.
The Goodpasture (GP) autoantigen has been identified as the alpha3(IV) collagen chain, one of six homologous chains designated alpha1-alpha6 that comprise type IV collagen (Hudson, B. G., Reeders, S. T., and Tryggvason, K. (1993) J. Biol. Chem. 268, 26033-26036). In this study, chimeric proteins were used to map the location of the major conformational, disulfide bond-dependent GP autoepitope(s) that has been previously localized to the noncollagenous (NC1) domain of alpha3(IV) chain. Fourteen alpha1/alpha3 NC1 chimeras were constructed by substituting one or more short sequences of alpha3(IV)NC1 at the corresponding positions in the non-immunoreactive alpha1(IV)NC1 domain and expressed in mammalian cells for proper folding. The interaction between the chimeras and eight GP sera was assessed by both direct and inhibition enzyme-linked immunosorbent assay. Two chimeras, C2 containing residues 17-31 of alpha3(IV)NC1 and C6 containing residues 127-141 of alpha3(IV)NC1, bound autoantibodies, as did combination chimeras containing these regions. The epitope(s) that encompasses these sequences is immunodominant, showing strong reactivity with all GP sera and accounting for 50-90% of the autoantibody reactivity toward alpha3(IV)NC1. The conformational nature of the epitope(s) in the C2 and C6 chimeras was established by reduction of the disulfide bonds and by PEPSCAN analysis of overlapping 12-mer peptides derived from alpha1- and alpha3(IV)NC1 sequences. The amino acid sequences 17-31 and 127-141 in alpha3(IV)NC1 have thus been shown to contain the critical residues of one or two disulfide bond-dependent conformational autoepitopes that bind GP autoantibodies.  相似文献   

20.
Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号