首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isoprene is a volatile and climate‐altering hydrocarbon with an atmospheric concentration similar to that of methane. It is well established that marine algae produce isoprene; however, until now there was no specific information about marine isoprene sinks. Here we demonstrate isoprene consumption in samples from temperate and tropical marine and coastal environments, and furthermore show that the most rapid degradation of isoprene coincides with the highest rates of isoprene production in estuarine sediments. Isoprene‐degrading enrichment cultures, analysed by denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene and by culturing, were generally dominated by Actinobacteria, but included other groups such as Alphaproteobacteria and Bacteroidetes, previously not known to degrade isoprene. In contrast to specialist methane‐oxidizing bacteria, cultivated isoprene degraders were nutritionally versatile, and nearly all of them were able to use n‐alkanes as a source of carbon and energy. We therefore tested and showed that the ubiquitous marine hydrocarbon‐degrader, Alcanivorax borkumensis, could also degrade isoprene. A mixture of the isolates consumed isoprene emitted from algal cultures, confirming that isoprene can be metabolized at low, environmentally relevant concentrations, and suggesting that, in the absence of spilled petroleum hydrocarbons, algal production of isoprene could maintain viable populations of hydrocarbon‐degrading microbes. This discovery of a missing marine sink for isoprene is the first step in obtaining more robust predictions of its flux, and suggests that algal‐derived isoprene provides an additional source of carbon for diverse microbes in the oceans.  相似文献   

2.
3.
While there is increasing evidence that marine bacteria are involved in the production of paralytic shellfish toxins in algal blooms, the exact roles of the bacteria and microalgae have proved elusive. A novel experimental approach to this problem involved incubating parallel cultures of toxin producing Alexandrium minutum Anokoha A in the dark and in a natural daylight cycle. High-performance liquid chromatography was used to measure paralytic shellfish toxins while bacterial growth was monitored by culture on high- and low-nutrient agar media. After a 22-day incubation period in the dark, A. minutum Anokoha A failed to produce saxitoxin while parallel light-grown cultures produced 1.17 μg per 10,000 algal cells. However, both dark- and light-grown cultures showed comparable gonyautoxin production. Copiotrophic and oligotrophic algal-associated bacteria showed similar growth patterns over the incubation period except that a dip in bacterial numbers corresponded to a peak in algal numbers in the light-grown cultures. It appears that inhibition of photosynthesis resulted in changes in the toxin profile of A. minutum Anokoha A. When used with other methods, this approach may help to elucidate the algal–bacterial-toxin connection.  相似文献   

4.
Abstract Escherichia coli O157:H7 were cultured in the presence or absence of norepinephrine to generate conditioned media. The presence of a growth-inducing factoKs) in the conditioned media was examined by measurement of the ability of conditioned media to support the growth of fresh cultures of E. coli O157:H7. Supplementation of fresh cultures with as little as 0.024% (v/v) norepinephrine conditioned medium resulted in increased growth as compared to controls, thereby indicating the presence of an autoinducer of growth. Analysis of the production kinetics for the autoinducer during the generation of conditioned media indicates that it differs from other more well characterized autoinducers. It is proposed that the neurohumoral environment of the host may contribute to the production of bacterial growth factors.  相似文献   

5.
Background: Colonization of the gastric mucosa by Helicobacter pylori is often associated with chronic gastric pathologies in humans. Development of disease correlates with the presence of distinct bacterial pathogenicity factors, such as the cag type IV secretion system (cag‐T4SS), the vacuolating cytotoxin (VacA), or the ability of the bacteria to acquire and incorporate cholesterol from human tissue. Materials and Methods: The in vitro growth of H. pylori requires media (Brucella broth) complemented with vitamins and horse serum or cyclodextrins, prepared as blood agar plates or liquid cultures. Liquid cultures usually show a slow growth. Here, we describe the successful growth of H. pylori strains 26695, P217, P12, and 60190 on serum‐free media replacing serum components or cyclodextrins with a commercially available cholesterol solution. Results: The effects of cholesterol as a substitute for serum or cyclodextrin were rigorously tested for growth of H. pylori on agar plates in vitro, for its general effects on bacterial protein synthesis (the proteome level), for H. pylori’s natural competence and plasmid DNA transfer, for the production of VacA, and the general function of the cag‐pathogenicity island and its encoded cag‐T4SS. Generally, growth of H. pylori with cholesterol instead of serum supplementation did not reveal any restrictions in the physiology and functionality of the bacteria except for strain 26695 showing a reduced growth on cholesterol media, whereas strain 60190 grew more efficient in cholesterol‐ versus serum‐supplemented liquid medium. Conclusions: The use of cholesterol represents a considerable option to serum complementation of growth media for in vitro growth of H. pylori.  相似文献   

6.
Yarrowia lipolytica has recently emerged as a prominent microbial host for production of terpenoids. Its robust metabolism and growth in wide range of substrates offer several advantages at industrial scale. In the present study, we investigate the metabolic potential of Y. lipolytica to produce isoprene. Sustainable production of isoprene has been attempted through engineering several microbial hosts; however, the engineering studies performed so far are challenged with low titers. Engineering of Y. lipolytica, which have inherent high acetyl-CoA flux could fuel precursors into the biosynthesis of isoprene and thus is an approach that would offer sustainable production opportunities. The present work, therefore, explores this opportunity wherein a codon-optimized IspS gene (single copy) of Pueraria montana was integrated into the Y. lipolytica genome. With no detectable isoprene level during the growth or stationary phase of modified strain, attempts were made to overexpress enzymes from MVA pathway. GC-FID analyses of gas collected during stationary phase revealed that engineered strains were able to produce detectable isoprene only after overexpressing HMGR (or tHMGR). The significant role of HMGR (tHMGR) in diverting the pathway flux toward DMAPP is thus highlighted in our study. Nevertheless, the final recombinant strains overexpressing HMGR (tHMGR) along with Erg13 and IDI showed isoprene titers of ~500 μg/L and yields of ~80 μg/g. Further characterization of the recombinant strains revealed high lipid and squalene content compared to the unmodified strain. Overall, the preliminary results of our laboratory-scale studies represent Y. lipolytica as a promising host for fermentative production of isoprene.  相似文献   

7.
Aims: Bacterial cellulose is an extracellular polysaccharide secreted by Acetobacter xylinum, which has become a novel material increasingly used in food and medical industries. However, its broad application is limited by its low yield and high cost. 1‐Methylcyclopropene (1‐MCP) is a potent inhibitor to either exogenous or endogenous ethylene during the biological senescence of plants, which has been broadly applied in commercial preservation of fruits and vegetables. The purpose of this study was to investigate the effects of 1‐MCP on both the growth of Acet.  xylinum and its cellulose production to demonstrate the potential enhancement of bacterial cellulose yield. Methods and Results: Three groups of samples were fermented under agitated culture with 125 rev min?1 rotational speed. To the culture media, 0·14 mg of 1‐MCP contained in 100 mg dextrose powder was added on assigned days or on the first culture day only. Results from the measurement of bacterial cell concentration and bacterial cellulose yield at the end of a 12‐day culture demonstrated that cultures excluding 1‐MCP displayed a higher cell concentration and a lower cellulose production, while cultures containing 1‐MCP produced 15·6% more cellulose (1‐MCP added on day 1) and 25·4% (1‐MCP added on each assigned day) with less biomass. Conclusions: 1‐MCP was able to affect the growth of Acet. xylinum cells and resulted in increasing bacterial cellulose yield up to 25·4% over controls, which did not contain 1‐MCP. Significance and Impact of the Study: This was the first study to use the growth inhibitor of plants to investigate its effects on bacterial growth and production. It also demonstrated a significant enhancement of bacterial cellulose yield by the addition of 1‐MCP during the common agitated culture of Acet. xylinum.  相似文献   

8.
Changes in the isoprenoid quinone composition ofMicrococcus varians IAM 12146 in response to growth in different media were investigated. When the bacterium was growth in an ordinary complex medium, it produced menaquinones as the sole quinones, with a dihydrogenated menaquinone with seven isoprene units as the major component, at all growth stages. On the other hand, cells grown in a chemically defined medium containing glutamate and pyruvate as carbon sources produced both menaquinones and demethylmenaquinones. The major demethylmenaquinone homologs produced were the unsaturated and dihydrogenated types with seven isoprene units. The demethylmenaquinone/menaquinone ratio in cells varied during a batch growth in the chemically defined medium. The highest ratio was found in cells at the mid-exponential phase of growth.  相似文献   

9.
Tris (Tris(hydroxymethyl)amino methane), a compound often used as a buffer in microalgal culture media, sustains active bacterial growth in non-axenic microalgal cultures when sodium phosphate is present. The low pH levels caused by bacterial growth and probably the depletion of phosphorus in the medium caused the collapse ofPhaeodactylum tricornutum cultures resulting in a reduction of microalgal growth from 32 x 106 to 1.1 x 106 cells ml–1. This emphasizes the need for care when interpreting the results of non-axenic microalgae cultures in which Tris or other organic buffer is added.  相似文献   

10.
11.
The typical morphology of Monostroma oxyspermum (Kütz.) Doty is lost in axenic culture. In synthetic media of the ASP type, it grows as a colony-like mass composed of round cells with numerous rhizoids. Such a mass is a fragile structure which falls apart upon shaking, or slight touch, into small cell-groups and single cells or cells with a long rhizoid. Only temporary saccate or monostromatic fronds appear and reach 1–2 mm in length when grown in enriched seawater media, but disintegrate and become a colony-like mass. The typical morphology is easily restored by adding at specific intervals filtrates of bacterial cultures and supernatant medium from axenic brown and red algal cultures to the basal medium (ASP7), or by reinfecting the Monostroma with an appropriate bacterial flora. Furthermore, the typical morphology in also maintained by bialgal cultures between Monostroma and other axenic strains of various species of seaweeds except the species belonging to the Chlorophyceae. Monostroma thus appears to utilize some substances released by most species of brown and red algae for its typical growth. Active substances released by bacteria, brown and red algae have not yet been identified and purified. However, it is demonstrated that in axenic cultures many species of seaweeds produce active extracellular substances which play an important role in growth and Morphogenesis of other species of seaweeds.  相似文献   

12.
Azospirillum sp. are plant growth promoting bacteria (PGPB) that increase grain yield in cereals and other species via growth promotion and/or stress alleviation. The PGPB beneficial effects have been partially attributed to bacterial production of plant hormones, especially growth promoters like auxins, gibberellins and cytokinins. This paper reports the characterization of the stress-like plant hormone abscisic acid (ABA) by GC-EIMS in cultures of A. brasilense Sp 245 after 120 h of incubation in chemically-defined media, and chemically-defined media with moderate stress (100 mM NaCl). Chemical characterization of ABA was done by gas chromatography-electron impact mass spectrometry (GC-EIMS) and quantification by selected ion monitoring (SIM) with a stable isotope of the hormone as internal standard in the media. A. brasilense cultures produced higher amounts of ABA per ml of culture when NaCl was incorporated in the culture medium. Inoculation of Arabidopsis thaliana with A. brasilense Sp 245 enhanced two-fold the plant’s ABA content. These results contribute to explain, at least to some extent, the beneficial effects of Azospirillum sp. previously found in inoculated plants placed under adverse environmental conditions.  相似文献   

13.
Heterorhabditis indica is a potential agent for the biological control of grubs in sugarcane fields in India. The type strain LN 2 was transferred to monoxenic cultures on its symbiont Photorhabdus luminescens and successfully produced on solid media. In liquid cultures, a mean dauer juvenile yield of 457 000 was obtained with a maximum of 648 000 per ml. Comparatively high yields have not been reported before. Therefore, costs related to the liquid culture production of H. indica will be lower than for other entomopathogenic nematodes currently used in biocontrol. Different bacterial clones had no significant influence on the dauer juvenile yields in liquid media. The exit from the dauer juvenile stage (recovery) after inoculation and the number of hermaphrodites significantly decreased when culture temperature was increased from 25-30 ° C; the dauer juvenile yields were not affected. The cell density of P. luminescens in batch cultures was higher at 25 and 30 ° C than at growth temperatures of 35 and 37 ° C. In continuous culture, the bacterial growth was inhibited when the growth temperature reached 38 ° C. After approximately 60 h, the bacteria adapted to higher temperature and the growth rate increased again. When the temperature was further increased to 40 ° C, the bacterial growth was inhibited.  相似文献   

14.
Aims: To investigate the effect of Aloe vera whole leaf extract on pure and mixed human gut bacterial cultures by assessing the bacterial growth and changes in the production of short chain fatty acids. Methods and Results: Bacteroides fragilis, Bifidobacterium infantis, and Eubacterium limosum were incubated with Aloe vera extracts [0%, 0·5%, 1%, 1·5% and 2%; (w/v)] for 24 and 48 h. Short chain fatty acids production was measured by gas chromatography/mass spectrometry analyses. A significant linear increase in growth response to Aloe vera supplementation was observed at 24 h for each of the bacterial cultures; however, only B. infantis and a mixed bacterial culture showed a significant positive linear dose response in growth at 48 h. In pure bacteria cultures, a significantly enhanced dose response to Aloe vera supplementation was observed in the production of acetic acid by B. infantis at 24 h and of butyric acid by E. limosum at 24 and 48 h. In the mixed bacterial culture, the production of propionic acid was reduced significantly at 24 and 48 h in a dose‐dependent fashion, whereas butyric acid production showed a significant linear increase. Conclusions: The results indicated that Aloe vera possessed bacteriogenic activity in vitro and altered the production of acetic, butyric and propionic acids by micro‐organisms selected for the study. Significance and Impact of the Study: The results of the study suggest that consumption of a dietary supplement, Aloe vera, may alter the production of short chain fatty acids by human intestinal microflora.  相似文献   

15.
Aims: Isoprene (2‐methyl‐1,3‐butadiene; C5H8) is naturally produced by photosynthesis and emitted in the atmosphere by the leaves of many herbaceous, deciduous and woody plants. Fermentative yeast and fungi (Ascomycota) are not genetically endowed with the isoprene production process. The work investigated whether Ascomycota can be genetically modified and endowed with the property of constitutive isoprene production. Methods and Results: Two different strategies for expression of the IspS gene in Saccharomyces cerevisiae were employed: (i) optimization of codon usage of the IspS gene for specific expression in S. cerevisiae and (ii) multiple independent integrations of the IspS gene in the rDNA loci of the yeast genome. Copy number analysis showed that IspS transgenes were on the average incorporated within about 25% of the endogenous rDNA. Codon use optimization of the Pueraria montana (kudzu vine) IspS gene (SckIspS) for S. cerevisiae showed fivefold greater expression of the IspS protein compared with that of nonoptimized IspS (kIspS). With the strategies mentioned earlier, heterologous expression of the kudzu isoprene synthase gene (kIspS) in S. cerevisiae was tested for stability and as a potential platform of fermentative isoprene production. The multi‐copy IspS transgenes were stably integrated and expressed for over 100 generations of yeast cell growth and constitutively produced volatile isoprene hydrocarbons. Secondary chemical modification of isoprene to a number of hydroxylated isoprene derivatives in the sealed reactor was also observed. Conclusion: Transformation of S. cerevisiae with the Pueraria montana var. lobata (kudzu vine) isoprene synthase gene (IspS) conferred to the yeast cells constitutive isoprene hydrocarbons production in the absence of adverse or toxic effects. Significance and Impact of the Study: First‐time demonstration of constitutive isoprene hydrocarbons production in a fermentative eukaryote operated through the mevalonic acid pathway. The work provides concept validation for the utilization of S. cerevisiae, as a platform for the production of volatile hydrocarbon biofuels and chemicals.  相似文献   

16.
Growth ofHelicobacter pylori in liquid culture requires the addition of media supplements that often interfere with subsequent purification of bacterial antigens. In order to determine whether cyclodextrins can substitute for conventionalH. pylori growth supplements, we culturedH. pylori in the presence of five commercially available cyclodextrins. The effect of these compounds on the production of the vacuolating cytotoxin antigen was evaluated. Several cyclodextrins supported flourishing growth and permitted the consistent production of vacuolating cytotoxin. These data suggest that Brucella broth supplemented with cyclodextrins is an improved medium for bacterial culture and industrial production ofH. pylori antigens.  相似文献   

17.
Conventional stirred-tank fermentors are inefficient in carrying out certain fermentation processes because of one or more of the following constraints: media backmix–flow, solids wall–deposits, microbial growth–disruption. Two series of novel design of aerated scraped tubular fermentors have been developed to over come the deleterious effects of these constraints. One design is based on a horizontal tube fitted with an internal mechanical wall-scraper that also promotes media segregation; the other design is based on a vertical array of vessels interconnected by small gas-jetting orifices that promote media segregation and clean-surface operation. Tests with cultures of Trichdorma viride (for single-cell protein production) and Candida lipolytica (for lipase production) have been carried out. It is shown that these novel fermentors can minimize the effects of catabolite repression inherent in both cultures and of wall growth in the former.  相似文献   

18.
The effect of thiamine limitation in combination with fungal elicitation on sesquiterpene (solavetivone) production was studied in Agrobacterium-transformed hairy-root cultures of Hyoscyamus muticus as a potential means of manipulating the growth rate independent of phosphorus availability. Limiting the initial supply of thiamine did not affect the growth of these cultures compared to growth at the control level of thiamine (0.01 g/l). There was also no enhancement in sesquiterpene production when thiamine supply was limited. Serial culturing in thiamine-free media suggests that these root cultures are not strictly auxotrophic for thiamine, in contrast to previously published results for untransformed root culture. The effect of phosphate limitation combined with elicitation on the production of solavetivone was examined at constant media volume to provide a constant elicitor concentration and to eliminate feedback-inhibition effects. Limiting the initial supply of phosphate to elicited cultures resulted in a twofold increase in solavetivone production as compared to the elicitation at control media phosphate levels (1.1mm). Because growth was attenuated, production per unit cell mass increased 11-fold compared to the control. The effect of phosphate limitation on solavetivone production at constant cell mass and elicitor per root mass was studied. Limiting the initial supply of phosphate to elicited cultures under these conditions did not result in enhanced production of solavetivone. The initially observed enhanced production of solavetivone at limiting initial phosphate concentrations is therefore due to factors other than the growth rate or phosphate involvement in secondary metabolism. Correspondence to: W. R. Curtis  相似文献   

19.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

20.
The spoilage characteristics of bacterial strains were studied by growing them at 28 ± 2°C in agar and broth media prepared with sterile fish and prawn flesh homogenates. The percentage of spoilers found among the bacterial isolates tested, as shown by odour production and halo zone formation, was independent of the source of flesh used. Indole and fluorescent pigment production were also observed in the broth.Pseudomonas, Vibrio andAcinetobacter exhibited faster growth in flesh media than in the usual artificial media. Decrease of protein and lipid concentration in the clear zone of agar media suggests the utilization of the available substrate by spoilage bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号