首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major histocompatibility complex WHO genes have now been cloned from representatives of all vertebrate classes except Agnatha. The recent accumulation of sequence data has given great insight into the course of evolution of these genes. Although the primary structure of the MHC genes varies greatly from class to class and also within the individual classes, the general features of the tertiary and quaternary structure have been conserved remarkably well during more than 400 million years.of evolution. The ancestral MHC genes may have been assembled from at least three structural elements derived from different gene families. Class II MHC genes appear to have been assembled first, and then to have given rise to class I genes.  相似文献   

2.
Evolution of Arabidopsis MIR genes generates novel microRNA classes   总被引:1,自引:0,他引:1  
  相似文献   

3.
Cyanobacterial secondary metabolites have attracted increasing scientific interest due to bioactivity of many compounds in various test systems. Among the known structures, oligopeptides are often found with many congeners sharing conserved substructures, while being highly variable in others. A major part of known oligopeptides are of non-ribosomal origin and can be grouped into classes with conserved structural properties. Thus, the overall structural diversity of cyanobacterial oligopeptides only seemingly suggests an equally high diversity of biosynthetic pathways and respective genes. For each class of peptides, some of which have been found in all major branches of the cyanobacterial evolutionary tree, homologous synthetases and genes can be inferred. This implies that non-ribosomal peptide synthetase genes are a very ancient part of the cyanobacterial genome and presumably have evolved by recombination and duplication events to reach the present structural diversity of cyanobacterial oligopeptides. In addition, peptide synthetases would appear to be an essential part of the cyanobacterial evolution and physiology. The present review presents an overview of the biosynthesis of cyanobacterial peptides and corresponding gene clusters, the structural diversity of structural types and structural variations within peptide classes, and implications for the evolution and plasticity of biosynthetic genes and the potential function of cyanobacterial peptides.  相似文献   

4.
Prokaryotic carbonic anhydrases   总被引:2,自引:0,他引:2  
Carbonic anhydrases catalyze the reversible hydration of CO(2) [CO(2)+H(2)Oright harpoon over left harpoon HCO(3)(-)+H(+)]. Since the discovery of this zinc (Zn) metalloenzyme in erythrocytes over 65 years ago, carbonic anhydrase has not only been found in virtually all mammalian tissues but is also abundant in plants and green unicellular algae. The enzyme is important to many eukaryotic physiological processes such as respiration, CO(2) transport and photosynthesis. Although ubiquitous in highly evolved organisms from the Eukarya domain, the enzyme has received scant attention in prokaryotes from the Bacteria and Archaea domains and has been purified from only five species since it was first identified in Neisseria sicca in 1963. Recent work has shown that carbonic anhydrase is widespread in metabolically diverse species from both the Archaea and Bacteria domains indicating that the enzyme has a more extensive and fundamental role in prokaryotic biology than previously recognized. A remarkable feature of carbonic anhydrase is the existence of three distinct classes (designated alpha, beta and gamma) that have no significant sequence identity and were invented independently. Thus, the carbonic anhydrase classes are excellent examples of convergent evolution of catalytic function. Genes encoding enzymes from all three classes have been identified in the prokaryotes with the beta and gamma classes predominating. All of the mammalian isozymes (including the 10 human isozymes) belong to the alpha class; however, only nine alpha class carbonic anhydrase genes have thus far been found in the Bacteria domain and none in the Archaea domain. The beta class is comprised of enzymes from the chloroplasts of both monocotyledonous and dicotyledonous plants as well as enzymes from phylogenetically diverse species from the Archaea and Bacteria domains. The only gamma class carbonic anhydrase that has thus far been isolated and characterized is from the methanoarchaeon Methanosarcina thermophila. Interestingly, many prokaryotes contain carbonic anhydrase genes from more than one class; some even contain genes from all three known classes. In addition, some prokaryotes contain multiple genes encoding carbonic anhydrases from the same class. The presence of multiple carbonic anhydrase genes within a species underscores the importance of this enzyme in prokaryotic physiology; however, the role(s) of this enzyme is still largely unknown. Even though most of the information known about the function(s) of carbonic anhydrase primarily relates to its role in cyanobacterial CO(2) fixation, the prokaryotic enzyme has also been shown to function in cyanate degradation and the survival of intracellular pathogens within their host. Investigations into prokaryotic carbonic anhydrase have already led to the identification of a new class (gamma) and future research will undoubtedly reveal novel functions for carbonic anhydrase in prokaryotes.  相似文献   

5.
The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) represents hitherto the only example of group translocation transport systems. PTS transporters are exclusively found in bacteria and can be grouped on the basis of sequence and structure into six classes. We have analyzed the evolution of mannose-class PTS transporters. These transporters have a limited distribution among bacteria being mostly harbored by species associated to animals. The results obtained indicate that these genes have undergone a complex evolutionary history, including extensive horizontal gene transfer events, duplications, and nonorthologous displacements. The phylogenetic analysis revealed an early diversification to specialize in different transport capabilities, but these events have also occurred relatively recently. In addition, these transporters can be further divided into seven groups and this division correlates with their transport capabilities. Finally, the consideration of the genomic context allowed us to propose putative functional roles for some uncharacterized PTS transporters. The functional role and distribution of mannose-class PTS transporters suggest that their expansion may have played a significant role in the establishment of symbiotic relationships between animals and some bacteria.  相似文献   

6.
MicroRNAs (miRNAs) and copy number variations (CNVs) represent two classes of newly discovered genomic elements that were shown to contribute to genome plasticity and evolution. Recent studies demonstrated that miRNAs and CNVs must have co-evolved and interacted in an attempt to maintain the balance of the dosage sensitive genes and at the same time increase the diversity of dosage non-sensitive genes, contributing to species evolution. It has been previously demonstrated that both the number of miRNAs that target genes found in CNV regions as well as the number of miRNA binding sites are significantly higher than those of genes found in non-CNV regions. These findings raise the possibility that miRNAs may have been created under evolutionary pressure, as a mechanism for increasing the tolerance to genome plasticity. In the current study, we aimed in exploring the differences of miRNAs-CNV functional interactions between human and seven others species. By performing in silico whole genome analysis in eight different species (human, chimpanzee, macaque, mouse, rat, chicken, dog and cow), we demonstrate that miRNAs targeting genes located within CNV regions in humans have special functional characteristics that provide an insight into the differences between humans and other species.  相似文献   

7.
In species representing different levels of vertebrate evolution, olfactory receptor genes have been identified by molecular cloning techniques. Comparing the deduced amino-acid sequences revealed that the olfactory receptor gene family of Rana esculenta resembles that of Xenopus laevis, indicating that amphibians in general may comprise two classes of olfactory receptors. Whereas teleost fish, including the goldfish Carassius auratus, possess only class I receptors, the `living fossil' Latimeria chalumnae is endowed with both receptor classes; interestingly, most of the class II genes turned out to be pseudogenes. Exploring receptor genes in aquatic mammals led to the discovery of a large array of only class II receptor genes in the dolphin Stenella Coeruleoalba; however, all of these genes were found to be non-functional pseudogenes. These results support the notion that class I receptors may be specialized for detecting water-soluble odorants and class II receptors for recognizing volatile odorants. Comparing the structural features of both receptor classes from various species revealed that they differ mainly in their extracellular loop 3, which may contribute to ligand specificity. Comparing the number and diversity of olfactory receptor genes in different species provides insight into the origin and the evolution of this unique gene family. Accepted: 29 July 1998  相似文献   

8.
Major histocompatibility complex (MHC) genes code for key proteins of the adaptive immune system, which present antigens from intra-cellular (MHC class I) and extra-cellular (MHC class II) pathogens. Because of their unprecedented diversity, MHC genes have long been an object of scientific interest, but due to methodological difficulties in genotyping of duplicated loci, our knowledge on the evolution of the MHC across different vertebrate lineages is still limited. Here, we compared the evolution of MHC class I and class II genes in three sister clades of common passerine birds, finches (Fringillinae and Carduelinae) and buntings (Emberizidae) using a uniform methodological (genotyping and data processing) approach and uniform sample sizes. Our analyses revealed contrasting evolutionary trajectories of the two MHC classes. We found a stronger signature of pervasive positive selection and higher allele diversity (allele numbers) at the MHC class I than class II. In contrast, MHC class II genes showed greater allele divergence (in terms of nucleotide diversity) and a much stronger recombination (gene conversion) signal. Gene copy numbers at both MHC class I and class II evolved via fluctuating selection and drift (Brownian Motion evolution), but the evolutionary rate was higher at class I. Our study constitutes one of few existing examples, where evolution of MHC class I and class II genes was directly compared using a multi-species approach. We recommend that re-focusing MHC research from single-species and single-class approaches towards multi-species analyses of both MHC classes can substantially increase our understanding MHC evolution in a broad phylogenetic context.Subject terms: Molecular evolution, Immunogenetics  相似文献   

9.

Background  

Although homeobox genes have been the subject of many studies, little is known about the main amino acid changes that occurred early in the evolution of genes belonging to different classes.  相似文献   

10.
Structure and Evolution of the Actin Gene Family in Arabidopsis Thaliana   总被引:1,自引:0,他引:1  
Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions.  相似文献   

11.
Vertebrate evolution has been largely driven by the duplication of genes that allow for the acquisition of new functions. The ATP-binding cassette (ABC) proteins constitute a large and functionally diverse family of membrane transporters. The members of this multigene family are found in all cellular organisms, most often engaged in the translocation of a wide variety of substrates across lipid membranes. Because of the diverse function of these genes, their large size, and the large number of orthologs, ABC genes represent an excellent tool to study gene family evolution. We have identified ABC proteins from the sea squirt (Ciona intestinalis), zebrafish (Danio rerio), and chicken (Gallus gallus) and, using phylogenetic analysis, identified those genes with a one-to-one orthologous relationship to human ABC proteins. All ABC protein subfamilies found in Ciona and zebrafish correspond to the human subfamilies, with the exception of a single ABCH subfamily gene found only in zebrafish. Multiple gene duplication and deletion events were identified in different lineages, indicating an ongoing process of gene evolution. As many ABC genes are involved in human genetic diseases, and important drug transport phenotypes, the understanding of ABC gene evolution is important to the development of animal models and functional studies.  相似文献   

12.
Turner LM  Chuong EB  Hoekstra HE 《Genetics》2008,179(4):2075-2089
Genes expressed in testes are critical to male reproductive success, affecting spermatogenesis, sperm competition, and sperm-egg interaction. Comparing the evolution of testis proteins at different taxonomic levels can reveal which genes and functional classes are targets of natural and sexual selection and whether the same genes are targets among taxa. Here we examine the evolution of testis-expressed proteins at different levels of divergence among three rodents, mouse (Mus musculus), rat (Rattus norvegicus), and deer mouse (Peromyscus maniculatus), to identify rapidly evolving genes. Comparison of expressed sequence tags (ESTs) from testes suggests that proteins with testis-specific expression evolve more rapidly on average than proteins with maximal expression in other tissues. Genes with the highest rates of evolution have a variety of functional roles including signal transduction, DNA binding, and egg-sperm interaction. Most of these rapidly evolving genes have not been identified previously as targets of selection in comparisons among more divergent mammals. To determine if these genes are evolving rapidly among closely related species, we sequenced 11 of these genes in six Peromyscus species and found evidence for positive selection in five of them. Together, these results demonstrate rapid evolution of functionally diverse testis-expressed proteins in rodents, including the identification of amino acids under lineage-specific selection in Peromyscus. Evidence for positive selection among closely related species suggests that changes in these proteins may have consequences for reproductive isolation.  相似文献   

13.
14.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

15.
16.
It has been hypothesized that evolutionary changes will be more frequent in later ontogeny than early ontogeny because of developmental constraint. To test this hypothesis, a genomewide examination of molecular evolution through ontogeny was carried out using comparative genomic data in Caenorhabditis elegans and Caenorhabditis briggsae. We found that the mean rate of amino acid replacement is not significantly different between genes expressed during and after embryogenesis. However, synonymous substitution rates differed significantly between these two classes. A genomewide survey of correlation between codon bias and expression level found codon bias to be significantly correlated with mRNA expression (r(s) = -0.30 and P < 10(-131)) but does not alone explain differences in dS between classes. Surprisingly, it was found that genes expressed after embryogenesis have a significantly greater number of duplicates in both the C. elegans and C. briggsae genomes (P < 10(-20) and P < 10(-13)) when compared with early-expressed and nonmodulated genes. A similarity in the distribution of duplicates of nonmodulated and early-expressed genes, as well as a disproportionately higher number of early pseudogenes, lend support to the hypothesis that this difference in duplicate number is caused by selection against gene duplicates of early-expressed genes, reflecting developmental constraint. Developmental constraint at the level of gene duplication may have important implications for macroevolutionary change.  相似文献   

17.
An open question in animal evolution is why the phylum- and superphylum-level body plans have changed so little, while the class- and family-level body plans have changed so greatly since the early Cambrian. Davidson and Erwin (Davidson and Erwin, 2006; Erwin and Davidson, 2009) proposed that the hierarchical structure of gene regulatory networks leads to different observed evolutionary rates for terminal properties of the body plan versus major aspects of body plan morphology. Here, we calculated the speed of evolution of genes in these gene regulatory networks. We found that the genes which determine the phylum and superphylum characters evolve slowly, while those genes which determine the classes, families, and speciation evolve more rapidly. This result furnishes genetic support to the hypothesis that the hierarchical structure of developmental regulatory networks provides an organizing structure which guides the evolution of aspects of the body plan.  相似文献   

18.
Traditionally, prokaryotic solute transport systems are classified into major groups based on the energetic requirement of the transport process. These include the secondary transporters that are driven by a proton or sodium motive force, and the ATP-binding cassette (ABC) primary transporters, which use the hydrolysis of ATP to fuel transport. These transporters are specified by entirely different architectures of polypeptides. Recently, transport systems have been discovered that are composed of combinations of distinct functional modules of both secondary and ABC transporters. These findings indicate that during evolution the combination of integral membrane transport proteins with either a periplasmic solute-binding protein or a cytosolic ATPase, or both, have resulted in distinct classes of transporters with unique architectures and properties.  相似文献   

19.
ADAM (a disintegrin and metalloprotease) genes have been identified in various tissues and species, and recently associated with several important human diseases such as tumor and asthma. Although various biological processes have been known for the ADAM family in different species including fertilization, neurogenesis, infection and inflammation, little is known about its detailed phylogenetic and molecular evolutionary history. In this study, the ADAMs of Xenopus (Silurana) tropicalis, Mus musculus, Rattus norvegicus, and Homo sapiens were collected and analyzed by using the Bayesian analysis and gene synteny analysis to establish a comprehensive phylogenetic relationship and evolutionary drive of this gene family. It was found that there were more ADAMs in the two rodents than in the amphibian, suggesting an expansion of the ADAM gene family during the early evolution of mammals. All ADAMs from this expansion were retained in both the rodents, but other duplication events occurred subsequently in the two rodents, respectively, leading to the classification of rodent ADAMs as classes I, II and III. Moreover, these duplicated ADAM genes in the rodents were found to be driven by positive selection, which might be the major force to retain them in the genome. Importantly, it was also found that orthologs of ADAM3 and 5 have been lost in humans. These results not only provide valuable information of the evolution of ADAM genes, but may also help in understanding the role of ADAM genes in the pathobiology of relevant diseases.  相似文献   

20.
The powerful pressures of sexual and natural selection associated with species recognition and reproduction are thought to manifest in a faster rate of evolution in sex-biased genes, an effect that has been documented particularly for male-biased genes expressed in the reproductive tract. However, little is known about the rate of evolution for genes involved in sexually dimorphic behaviors, which often form the neurological basis of intrasexual competition and mate choice. We used microarray data, designed to uncover sex-biased expression patterns in embryonic chicken brain, in conjunction with data on the rate of sequence evolution for >4,000 coding regions aligned between chicken and zebra finch in order to study the role of selection in governing the molecular evolution for sex-biased and unbiased genes. Surprisingly, we found that female-biased genes, defined across a range of cutoff values, show a higher rate of functional evolution than both male-biased and unbiased genes. Autosomal male-biased genes evolve at a similar rate as unbiased genes. Sex-specific genomic properties, such as heterogeneity in genomic distribution and GC content, and codon usage bias for sex-biased classes fail to explain this surprising result, suggesting that selective pressures may be acting differently on the male and female brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号