首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A novel one-step method was developed for entrapment of proteolytic enzymes, namely carboxypeptidase B and trypsin, in polymer composite gel based on poly(N-vinyl caprolactam). Native proteases and enzymes previously stabilized by covalent attachment to poly(vinylpyrrolidone-co-acrolein) were immobilized in gels. After immobilization, about 90% and 75% of original trypsin and CPB activities, respectively, were retained. The immobilized enzymes were active within a wide pH range. The optimum temperature of the entrapped enzymes was approximately 25°C higher than that of the soluble enzymes. The entrapped enzymes were successfully used to obtain human insulin from recombinant proinsulin.  相似文献   

2.
3.
A system has been developed for reversibly binding and thermoprecipitating biotinylated macromolecules. A high off-rate Ser45Ala (S45A) streptavidin mutant has been covalently conjugated to poly(N-isopropylacrylamide) (PNIPAAm), a temperature-responsive polymer. The resulting conjugate is shown to coprecipitate biotinylated immunoglobulin G (IgG) and a biotinylated oligonucleotide in response to a thermal stimulus. Thermally precipitated biotinylated macromolecules can be released from the S45A-PNIPAAm conjugate by simple treatment with excess free biotin. This release step has been shown to be unique to the mutant streptavidin conjugate-a conjugate of wild type (WT) streptavidin and PNIPAAm does not release bound biotinylated molecules upon treatment with excess free biotin. The capture efficiency (fraction of target molecule precipitated from solution) of the S45A-PNIPAAm conjugate is similar to that of the WT-PNIPAAm conjugate for the biotinylated IgG target molecule (near 100%), but significantly smaller for the biotinylated oligonucleotide target (approximately 60% for the S45A-PNIPAAm conjugate compared to 80% for the WT-PNIPAAm conjugate). The release efficiency (fraction of originally precipitated target molecule released after treatment with free biotin) of the S45A-PNIPAAm conjugate is 70-80% for the biotinylated IgG target and nears 100% for the biotinylated oligonucleotide target. This system demonstrates the use of a high off-rate streptavidin mutant to add reversibility to a system based on smart-polymer-streptavidin conjugates.  相似文献   

4.
We designed a simple procedure for the purification of peptidylarginine deiminase, which catalyzes the deimination of arginyl residues in protein, from rabbit skeletal muscle using substrate affinity chromatography. Of the immobilized substrate ligands tested, i.e. protamine and soybean trypsin inhibitor (Kunitz) (STI), STI-Sepharose was found to be an effective affinity adsorbent for purification of the enzyme. The specific binding of peptidylarginine deiminase to STI-Sepharose was observed in the presence of calcium ion, and the enzyme could be selectively eluted from the affinity adsorbent by washing with chelator. A 1,800-fold purification with a 50% yield was achieved in the three-step procedure, which involved DEAE-Sephacel ion-exchange and STI-Sepharose affinity chromatography. The purified enzyme was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific activity and the recovery were considerably higher than have been obtained by any procedures previously reported. The specific interaction of peptidylarginine deiminase with STI immobilized on Sepharose was also investigated quantitatively by frontal affinity chromatography. In this method, a peptidylarginine deiminase solution was applied continuously to an STI-Sepharose column and the retardation of the elution front was measured as a parameter of the strength of the interaction. The dissociation constant for the enzyme with STI was found to be 2.3 X 10(-7)M. This value was in good agreement with that obtained by kinetic analysis in our previous studies. Peptidylarginine deiminase required millimolar Ca2+ for the binding to STI-Sepharose. The Ca2+ dependence of the enzyme binding was quite similar to that of the enzymatic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The amino acid sequence of soybean trypsin inhibitor (Kunitz)   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Three-fold structural pattern in the soybean trypsin inhibitor (Kunitz)   总被引:5,自引:0,他引:5  
The molecule contains three very similar irregular Y-shaped lobes of antiparallel twisted β-sheet, which are grouped symmetrically round a central axis and linked by hydrogen bonds to form a six-stranded barrel. Each lobe can be superposed on either neighbour by a rotation of approximately 120 °. Of the 160 residues seen in the X-ray electron density map, 101 may be superposed onto other residues within a root-mean-square distance of 2.1 Å. The bond which reacts with trypsin lies on a loop between the first two lobes. It is suggested that the protein evolved from a primitive symmetrical trimer of identical subunits by tandem gene triplication.  相似文献   

9.
10.
11.
12.
13.
Four proteinase inhibitors, A-II, A-III, B-I, and B-II, were isolated from seeds of Albizzia julibrissin (silk tree) of the subfamily Mimosoideae, which is often regarded as the most primitive group of the Leguminosae plants. They were all of the high-molecular weight type (21,600 for A-II and A-III, and 19,000 for B-I and B-II), and composed of two polypeptide chains, linked together by a disulfide bond. A-II (A-III) inhibited bovine trypsin and alpha-chymotrypsin probably at an identical site. B-I (BII) inactivated bovine alpha-chymotrypsin and porcine elastase. Sequence analyses of A-II and B-II revealed a considerable homology with soybean trypsin inhibitor (Kunitz) but suggested the presence of an about 20-amino acid insertion in the A-II molecule.  相似文献   

14.
Soybean Kunitz trypsin inhibitor (SKTI) has several polymorphic types, which are controlled by co-dominant multiple alleles at a single locus. Of these types, Tia and Tib are predominant types, and there are nine differences in amino acids between Tia and Tib. Recently, an intermediate transitional type (Tib ( i5 )) between them was detected. However, other transitional types have not been detected despite surveys of many cultivated and wild soybeans. One of the reasons why other transitional variants have not been found is inferred to be due to the difficulty of the detection of SKTI protein variants by polyacrylamide gel electrophoresis (PAGE). To detect novel variants of SKTI, nucleotide sequence analysis in addition to PAGE was carried out. Four new variants were found from many Japanese wild soybeans. Of these variants, three (designated as Tia ( a1 ), Tia ( a2 ), Tia ( b1 )) were detected through gene sequence analysis on wild soybeans having the same electrophoretic mobility as Tia, and one (Tig) was detected through PAGE. The Tig variant showed a slightly lower electrophoretic mobility than Tic. The nucleotide sequences of Tig were identical to those of Tib except for one T --> C transitional mutation at position +340. The sequences of Tia ( a1 )and Tia ( a2 ) genes were identical to those of Tia with the exception of a G --> A mutation at position +376 and a T --> C mutation at +404, respectively. The sequence of Tia ( b1 ) differed from Tia by three nucleotides: C --> A at position +331, T --> C at +459 and A --> G at +484. Of the three nucleotide changes, two were common to Tia ( b1 ), Tib ( i5 ) and Tib, suggesting that Tia ( b1 ) is an intermediate transitional type between Tia and Tib. Our results suggest that Tib type has been differentiated through a series of mutations from Tia before the domestication of cultivated soybean.  相似文献   

15.
16.
17.
18.
Reversible denaturation of the soybean Kunitz trypsin inhibitor   总被引:6,自引:0,他引:6  
The soybean Kunitz trypsin inhibitor (SKTI) is a beta-sheet protein with unusual stability to chemical and thermal denaturation. Different spectroscopic criteria were used to follow the thermal denaturation and renaturation of SKTI. Upon heating to 70 degrees C, changes in UV difference spectra showed increased absorbance at 292 and 297 nm, attributable to perturbation of aromatic residues. Cooling the protein resulted in restoration of the native spectrum unless reduced with dithiothreitol. Far- and near-UV CD spectra also indicate thermal unfolding involving the core tryptophan and tyrosine residues. Both CD and UV-absorbance data suggest a two-state transition with the midpoint at approximately 65 degrees C. CD data along with the increased fluorescence intensity of the reporter fluorophore, 1-anilino-8-naphthalenesulfonate with SKTI, between 60 and 70 degrees C, are consistent with a transition of the native inhibitor to an alternate conformation with a more molten state. Even after heating to 90 degrees C, subsequent cooling of SKTI resulted in >90% of native trypsin inhibition potential. These results indicate that thermal denaturation of SKTI is readily reversible to the native form upon cooling and may provide a useful system for future protein folding studies in the class of disordered beta-sheet proteins.  相似文献   

19.
The Kunitz trypsin inhibitor (KTi) in soybean has several polymorphic types that are controlled by multiple alleles, which behave in a co-dominant fashion. Of these, Tia and Tib, which differ by nine amino acids, are the predominant types. In order to develop a single nucleotide amplified polymorphism (SNAP) marker for the classification of the predominant KTi types, Tia and Tib, and evaluate KTi activities by differing KTi type total 451 soybean mutant lines (M12–M16 generation) were incorporated in this study. Among 451 soybean mutants, 144 and 13 mutant lines showed decreased and increased trypsin inhibitor activity when compared with the original cultivars, respectively. To identify the KTi type, we designed a SNAP marker. Among 451 mutant lines from 12 soybean cultivars and landraces, 8 mutant lines derived from cvs. Baekwoon, Paldal and Suwon115 showed a change in KTi type when compared with the original cultivars using the SNAP marker. Five mutant lines in Suwon115 changed from Tib to Tia, while two mutant lines derived from cv. Baekwoon and one mutant line derived from cv. Paldal were changed from Tia to Tib. These changes of KTi types were confirmed by sequencing of the KTi genes and non-denaturing polyacrylamide gel electrophoresis of the KTi proteins. To identify the effect of KTi activity based on the change in KTi type, we measured the KTi activity using the three cultivars and eight mutant lines that showed changes in KTi type. Two mutant lines (BW-1 and 7-2) derived from cv. Baekwoon and one mutant line (PD-5-10) from cv. Paldal that changed from Tia to Tib showed lower activity than the original cultivar. In cv. Suwon115, five mutant lines that changed from Tib to Tia showed higher activity than the original cultivar. These results indicate that the designed SNAP marker was capable of identifying the KTi type and that Tia activity was higher than Tib activity in soybean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号