首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A glucosyltransferase (GT) of Arabidopsis, UGT71B6, recognizing the naturally occurring enantiomer of abscisic acid (ABA) in vitro, has been used to disturb ABA homeostasis in planta. Transgenic plants constitutively overexpressing UGT71B6 (71B6-OE) have been analysed for changes in ABA and the related ABA metabolites abscisic acid glucose ester (ABA-GE), phaseic acid (PA), dihydrophaseic acid (DPA), 7'-hydroxyABA and neo-phaseic acid. Overexpression of the GT led to massive accumulation of ABA-GE and reduced levels of the oxidative metabolites PA and DPA, but had marginal effect on levels of free ABA. The control of ABA homeostasis, as reflected in levels of the different metabolites, differed in the 71B6-OEs whether the plants were grown under standard conditions or subjected to wilt stress. The impact of increased glucosylation of ABA on ABA-related phenotypes has also been assessed. Increased glucosylation of ABA led to phenotypic changes in post-germinative growth. The use of two structural analogues of ABA, known to have biological activity but to differ in their capacity to act as substrates for 71B6 in vitro, confirmed that the phenotypic changes arose specifically from the increased glucosylation caused by overexpression of 71B6. The phenotype and profile of ABA and related metabolites in a knockout line of 71B6, relative to wild type, has been assessed during Arabidopsis development and following stress treatments. The lack of major changes in these parameters is discussed in the context of functional redundancy of the multigene family of GTs in Arabidopsis.  相似文献   

2.
Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.  相似文献   

3.
Human UDP-glucuronosyltransferases (UGT) are the dominant phase II conjugative drug metabolism enzymes that also play a central role in processing a range of endobiotic compounds. UGTs catalyze the covalent addition of glucuronic acid sugar moieties to a host of therapeutics and environmental toxins, as well as to a variety of endogenous steroids and other signaling molecules. We report the 1.8-A resolution apo crystal structure of the UDP-glucuronic acid binding domain of human UGT isoform 2B7 (UGT2B7), which catalyzes the conjugative elimination of opioid, antiviral, and anticancer drugs. This is the first crystal structure of any region of a mammalian UGT drug metabolism enzyme. Designated UGT2B7 mutants at residues predicted to interact with the UDP-glucuronic acid cofactor exhibited significantly impaired catalytic activity, with maximum effects observed for amino acids closest to the glucuronic acid sugar transferred to the acceptor molecule. Homology modeling of UGT2B7 with related plant flavonoid glucosyltransferases indicates human UGTs share a common catalytic mechanism. Point mutations at predicted catalytic residues in UGT2B7 abrogated activity, strongly suggesting human UGTs also utilize a serine hydrolase-like catalytic mechanism to facilitate glucuronic acid transfer.  相似文献   

4.
以蚕豆叶片下表皮条为材料,研究了微丝在气孔运动中的作用。利用肌动蛋白纤丝专一性抑制剂──细胞松弛素B(CB)预处理后,再用诱导气孔运动的因子处理表皮条,在显微镜下观测气孔孔径的变化。结果显示,用CB处理开放或关闭状态气孔,其开度均不发生变化;CB处理使微丝解聚,气孔运动被抑制;且CB处理后气孔的运动是可以恢复的。实验进一步表明,开放气孔经10mg/L的CB预处理后,ABA、Ca2+及暗诱导气孔关闭的作用均不同程度地受到抑制,推测微丝可能参与ABA、Ca2+及暗诱导的气孔关闭过程;关闭气孔经10mg/L的CB预处理后,K+和(或)光诱导气孔开放的作用受到抑制,推测微丝可能参与光及K+诱导的气孔开放过程。  相似文献   

5.
Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.  相似文献   

6.
We have investigated the relationship between seed dormancy and abscisic acid (ABA) metabolism in the monocot barley and the dicot Arabidopsis. Whether dormant (D) or non-dormant (ND), dry seed of Arabidopsis and embryos of dry barley grains all had similarly high levels of ABA. ABA levels decreased rapidly upon imbibition, although they fell further in ND than in D. Gene expression profiles were determined in Arabidopsis for key ABA biosynthetic [the 9-cis epoxycarotenoid dioxygenasegene family] and ABA catabolic [the ABA 8'-hydroxylase gene family (CYP707A)] genes. Of these, only the AtCYP707A2 gene was differentially expressed between D and ND seeds, being expressed to a much higher level in ND seeds. Similarly, a barley CYP707 homologue, (HvABA8'OH-1) was expressed to a much higher level in embryos from ND grains than from D grains. Consistent with this, in situ hybridization studies showed HvABA8'OH-1 mRNA expression was stronger in embryos from ND grains. Surprisingly, the signal was confined in the coleorhiza, suggesting that this tissue plays a key role in dormancy release. Constitutive expression of a CYP707A gene in transgenic Arabidopsis resulted in decreased ABA content in mature dry seeds and a much shorter after-ripening period to overcome dormancy. Conversely, mutating the CYP707A2 gene resulted in seeds that required longer after-ripening to break dormancy. Our results point to a pivotal role for the ABA 8'-hydroxylase gene in controlling dormancy and that the action of this enzyme may be confined to a particular organ as in the coleorhiza of cereals.  相似文献   

7.
We investigated the role of the stop transfer sequence of human UGT1A6 in ER assembly and enzyme activity. We found that this sequence was able to address and translocate the upstream lumenal domain into microsomal membranes in vitro co- and posttranslationally. The signal activity of this sequence was further demonstrated in HeLa cells by its ability to target and maintain the CD4 protein deleted from both the N-terminal signal peptide and C-terminal transmembrane domain into the ER. We showed that total or partial deletion of the stop transfer sequence of UGT1A6 severely impaired enzyme activity highlighting its importance in both membrane assembly and function.  相似文献   

8.
对一个中国汉族Gilbert综合征遗传家系致病基因突变位点进行鉴定,以期了解该病的分子遗传学基础。首先提取先证者基因组DNA,PCR扩增尿苷二磷酸葡萄糖醛酸转移酶UGT1A1基因的5个外显子,以琼脂糖电泳鉴定PCR产物,纯化后直接测序鉴定。基因扫描显示,与血清胆红素水平密切相关的UGT1A1基因在第1和第5外显子存在纯合突变,而 UGT1A1基因启动子区域和内含子/外显子剪接边界位点序列未检测到突变。进一步对其他家系成员该基因的相应位点进行突变检测,结果显示他们在第1和第5外显子也存在杂合突变,其中还有两个成员在启动子区域检测到(TA)插入突变。对家系成员未抗凝新鲜血液进行生化检测证实了基因突变分析的结果。综合以上结果发现该家系三种突变并存,致病因素为第1和/或第5外显子突变,为显性遗传,两种突变位点纯合导致先证者出现严重胆红素代谢功能障碍。该家系因此成为Gilbert综合征突变位点及其致病机理研究的一个典型临床病例。  相似文献   

9.
10.
11.
Uridine diphosphate‐glucosyltransferases (UGTs) maintain abscisic acid (ABA) homeostasis in Arabidopsis thaliana by converting ABA to abscisic acid‐glucose ester (ABA‐GE). UGT71C5 plays an important role in the generation of ABA‐GE. Abscisic acid receptors are crucial upstream components of the ABA signaling pathway, but how UGTs and ABA receptors function together to modulate ABA levels is unknown. Here, we demonstrated that the ABA receptors RCAR12/13 and UGT71C5 maintain ABA homeostasis in Arabidopsis following rehydration under drought stress. Biochemical analyses show that UGT71C5 directly interacted with RCAR8/12/13 in yeast cells, and the interactions between UGT71C5 and RCAR12/13 were enhanced by ABA treatment. Enzyme activity analysis showed that ABA‐GE contents were significantly elevated in the presence of RCAR12 or RCAR13, suggesting that these ABA receptors enhance the activity of UGT71C5. Determination of the content of ABA and ABA‐GE in Arabidopsis following rehydration under drought stress revealed that ABA‐GE contents were significantly higher in Arabidopsis plants overexpressing RCAR12 and RCAR13 than in non‐transformed plants and plants overexpressing RCAR11 following rehydration under drought stress. These observations suggest that RCAR12 and RCAR13 enhance the activity of UGT71C5 to glycosylate excess ABA into ABA‐GE following rehydration under drought stress, representing a rapid mechanism for regulating plant growth and development.  相似文献   

12.
Testosterone and epitestosterone are secreted mainly as glucuronide metabolites and the urinary ratio of testosterone glucuronide to epitestosterone glucuronide, often called T/E, serves as a marker for possible anabolic steroids abuse by athletes. UDP-glucuronosyltransferase (UGT) 2B17 is the most important catalyst of testosterone glucuronidation. The T/E might be affected by drugs that interact with UGT2B17, or other enzymes that contribute to testosterone glucuronidation. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used by sportsmen and we have examined the effect of two NSAIDs, diclofenac and ibuprofen, on testosterone and epitestosterone glucuronidation in human liver microsomes. In parallel, we have studied the inhibitory effect of these NSAIDs on recombinant UGT2B17 and UGT2B15, as well as other human hepatic UGTs that revealed low but detectable testosterone glucuronidation activity, namely UGT1A3, UGT1A4, UGT1A9 and UGT2B7. Both diclofenac and ibuprofen inhibited testosterone glucuronidation in microsomes, as well as UGT2B15 and UGT2B17. Interestingly, UGT2B15 was more sensitive than UGT2B17 to the two drugs, particularly to ibuprofen. Human liver microsomes lacking functional UGT2B17 exhibited significantly higher sensitivity to ibuprofen, suggesting that UGT2B15 plays a major role in the residual testosterone glucuronidation activity in UGT2B17-deficient individuals. Nonetheless, a minor contribution of other UGTs, particularly UGT1A9, to testosterone glucuronidation in such individuals cannot be ruled out at this stage. The epitestosterone glucuronidation activity of human liver microsomes was largely insensitive to ibuprofen and diclofenac. Taken together, the results highlight potential interactions between NSAIDs and androgen glucuronidation with possible implications for the validity of doping tests.  相似文献   

13.
Narayanan R  LeDuc B  Williams DA 《Life sciences》2004,74(20):2527-2539
The purposes of this study were to develop a HPLC method to assay for haloperidol glucuronide (HALG); to apply this assay method to the in vitro determination of haloperidol (HAL) UDP-glucuronosyltransferase (UGT) enzyme kinetics in rat liver microsomes (RLM); and to identify the UGT isoforms catalyzing glucuronidation of HAL in rats. Incubation of Brij-activated RLM with HAL and UDP-glucuronic acid (UDPGA) in TRIS pH 7.4 buffer resulted in the formation of a single peak in the HPLC chromatogram at 270 nm. The identity of this peak was confirmed to be that of HALG by 1) β-glucuronidase hydrolysis; 2) incubation without UDPGA; 3) UV spectral analysis; and 4) LC/MS/MS to yield the expected mass of 552.1. Enzyme kinetic studies using single enzyme Michaelis-Menton model showed an apparent Vmax = 271.9 ± 10.1 pmoles min−1 mg protein−1 and Km = 61 ± 7.2 μM. Glucuronidation activity in homozygous Gunn (j/j) rats was approximately 80% as compared to Sprague-Dawley RLM. HALG formation was approximately doubled in PB-induced RLM. There was no increase in glucuronidation activities in 3MC-induced RLM. The Gunn rat and the PB-induced RLM data suggest predominant but not exclusive involvement of the UGT2B family in the formation of HALG. Because the UGTs exhibit overlapping substrate specificities and most substrates are glucuronidated by more than one isoform, inhibition studies with UGT2B1 substrate probe testosterone and the UGT2B12 substrate probe borneol were conducted. UGT2B1 and UGT2B12 exhibited 40% and 90% inhibition of HAL glucuronidation, respectively. Thus, UGT2B12 and UGT 2B1 isoforms are responsible for catalyzing HAL glucuronidation in rats. Our HPLC assay provides a specific and sensitive technique for the measurement of in vitro HAL-UGT activity.  相似文献   

14.
When 14C-labelled abscisic acid ([14C]ABA) was supplied to isolated protoplasts of the barley leaf at pH 6, initial rates of metabolism were about five times higher in epidermal cell protoplasts than in mesophyll cell protoplasts if equal cytosolic volumes were considered. In spite of the fact that epidermal cells make up only about 35% of the total water space in barley leaves, and despite the small cytosolic volume of these cells, in intact leaves all epidermal cells would thus metabolize half as much ABA per unit time as the mesophyll cells (0–27 and 0–51 mmol h?1 m?3 leaf water). Therefore, under these conditions epidermal cells seem to be a stronger sink than mesophyll cells for ABA that arrives via the transpiration stream. However, at an apoplastic pH of 7–25, which occurs in stressed leaves, the proportion of total metabolized ABA would be much smaller in epidermal than in mesophyll cells (0–029 and 0–204 mmolh?l m?3 leaf water). Our results indicate that under conditions of slightly alkaline apoplastic pH the epidermis may serve as the main source for fast stress-dependent ABA redistribution into the guard cell apoplast. This is partly the result of ABA transport across the epidermal tonoplast, which is dependent on the apoplastic pH and possibly on the cytosolic calcium concentration. The cuticle seems to be of no particular importance in stress-induced apoplastic ABA shifts and cannot be regarded as a significant sink for high ABA concentrations under stress.  相似文献   

15.
To develop a specific inhibitor of abscisic acid (ABA) 8′-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of gibberellin as well as ABA 8′-hydroxylase. Although most of these analogues were less effective than UNI in inhibition of ABA 8′-hydroxylase and rice seedling growth, we found that a lactol-bridged analogue with an imidazole is a potent inhibitor of ABA 8′-hydroxylase but not of plant growth. This compound, abscinazole-F1, induced drought tolerance in apple seedlings upon spray treatment with a 10 μM solution.  相似文献   

16.
The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.  相似文献   

17.
Gender difference in human bisphenol A (BPA) concentrations was revealed by determining serum BPA. We studied the serum concentrations and the metabolism of BPA in rats by an HPLC system. Rat serum BPA concentrations were significantly higher in males (24.9+/-7.38 ng/ml, P=0.026, n=10) than in females (8.27+/-3.11 ng/ml, n=10), as in humans. The resultant enzyme reaction products of BPA glucuronidation in the rat liver microsomes fraction were analyzed by an HPLC system. The ratio of BPA glucuronidation in the microsome reaction was significantly higher (P=0.015) in female than in male rats. The mRNA expression of UDP-glucuronosyltransferase 2B1 (UGT2B1), an isoform of UGT related to BPA glucuronidation, in the rat liver was analyzed by a real-time quantitative RT-PCR. The relative expression level of UGT2B1 mRNA was significantly higher (P<0.001) in female than in male rat livers. The gender difference in serum BPA concentrations may be explained by the difference in clearance based on the UGT activities.  相似文献   

18.
The epimeric tricyclic sesquiterpenoid alcohols globulol, epiglobulol, cedrol, epicedrol, longifolol, and isolongifolol were investigated in their ability to inhibit the recombinant human UDP-glucuronosyltransferase (UGT) 2B7. The stereoisomers displayed rapidly reversible competitive inhibition, which was substrate-independent. Longifolol and its stereoisomer isolongifolol displayed the lowest competitive inhibition constants (K(ic)) of 23 and 26 nM, respectively. The K(ic) values of cedrol and its epimer epicedrol were 0.15 and 0.21 microM, those of globulol and epiglobulol were 5.4 and 4.0 microM, respectively. The diastereomeric alcohols exhibited nearly identical affinities toward UGT2B7 indicating that the spatial arrangement of the hydroxy group had no influence on the dissociation of the enzyme-terpenoid complex. The high affinities stemmed presumably from mere hydrophobic interactions between the hydrocarbon scaffold of the terpenoid alcohol and the binding site of the enzyme. Glucuronidation assays revealed that there were large differences in the rates at which the epimeric alcohols were conjugated. Therefore, the spatial arrangement of the hydroxy group controlled the rate of the UGT2B7-catalyzed reaction. The introduction of a methyl group into the side chain of isolongifolol and longifolol increased the steric hindrance. As a result, the rate of the UGT2B7-catalyzed reaction was decreased by more than 88%. The findings indicated that the rate of the UGT2B7-catalyzed glucuronidation is significantly controlled by stereochemical and steric factors. Considering the high inhibition levels exerted by the tricyclic sesquiterpenoid alcohols, these compounds might serve as valuable lead structures for the design of potent inhibitors for UGT2B7.  相似文献   

19.
The roots and leaves of 7-day seedlings of three winter wheat cultivars differing in frost resistant were used to study changes in lectin activity under cytoskeleton modifiers (DMSO-7%; colchicine-1 m m; oryzalin-15 microm; cytochalasin B-15 microm) of non-hardened (23 degrees C) and hardened (2-3 degrees C, 3-7 day) plants. Plants were grown with ABA (30 microm) or without ABA. Pretreatment with colchicine, oryzalin [inhibitors of microtubules (MT) polymerization], cytochalasin B [inhibitor of microfilament (MF) polymerization] increased the activity of cell wall lectins, although pretreatment with DMSO (stabilizer of microtubules) decreased the activity. Both hardening and ABA decreased the effect of the cytoskeletal modifiers. These results could be explained by the appearance of tolerant MTs with less affinity. It is probable that increase in the activity of cell wall lectins may be the compensatory mechanism which stabilizes the cytoskeleton structure in conditions tending to disrupt it. The genotype with low resistance had higher sensitivity of lectin activity to cytoskeleton modifiers than the frost resistant genotype. The results suggest that leaves have more stable MTs and MFs and stronger MT-MF binding than roots.  相似文献   

20.
(Iso)flavonoids are a diverse group of plant secondary metabolites with important effects on plant, animal and human health. They exist in various glycosidic forms. Glycosylation, which may determine their bioactivities and functions, is controlled by specific plant uridine diphosphate glycosyltransferases (UGTs). We describe a new multifunctional (iso)flavonoid glycosyltransferase, UGT85H2, from the model legume Medicago truncatula with activity towards a number of phenylpropanoid-derived natural products including the flavonol kaempferol, the isoflavone biochanin A, and the chalcone isoliquiritigenin. The crystal structure of UGT85H2 has been determined at 2.1 A resolution, and reveals distinct structural features that are different from those of other UGTs and related to the enzyme's functions and substrate specificities. Structural and comparative analyses revealed the putative binding sites for the donor and acceptor substrates that are located in a large cleft formed between the two domains of the enzyme, and indicated that Trp360 may undergo a conformational change after sugar donor binding to the enzyme. UGT85H2 has higher specificity for flavonol than for isoflavone. Further substrate docking combined with enzyme activity assay and kinetic analysis provided structural insights into this substrate specificity and preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号