首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

2.
3.
It is widely accepted that physiological mechanical stimulation suppresses apoptosis and induces synthesis of extracellular matrix by osteoblasts; however, the effect of stress overloading on osteoblasts has not been fully illustrated. In the present study, we investigated the effect of cyclic compressive stress on rat osteoblasts apoptosis, using a novel liquid drop method to generate mechanical stress on osteoblast monolayers. After treatment with different levels of mechanical stress, apoptosis of osteoblasts and activations of mitogen-activated protein kinases (MAPKs) and PI3-kinase (PI3K)/Akt signaling pathways were investigated. Osteoblasts apoptosis was observed after treated with specific inhibitors prior to mechanical stimulation. Protein levels of Bax/Bcl-2/caspase-3 signaling were determined using western blot with or without inhibitors of PI3K/Akt and phosphorylation of c-jun N-terminal kinase (JNK) MAPK. Results showed that mechanical stimulation led to osteoblasts apoptosis in a dose-dependent manner and a remarkable activation of MAPKs and PI3K/Akt signaling pathways. Activation of PI3K/Akt protected against apoptosis, whereas JNK MAPK increased apoptosis via regulation of Bax/Bcl-2/caspase-3 activation. In summary, the PI3K/Akt and JNK MAPK signaling pathways played opposing roles in osteoblasts apoptosis, resulting in inhibition of apoptosis upon small-magnitude stress and increased apoptosis upon large-magnitude stress.  相似文献   

4.
Serum contains a variety of biomolecules, which play an important role in cell proliferation and survival. We sought to identify the serum factor responsible for mitigating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and to investigate its molecular mechanism. TRAIL induced effective apoptosis without serum, whereas bovine serum decreased apoptosis by suppressing cytochrome c release and caspase activation. Indeed, albumin-bound lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) inhibited TRAIL-induced apoptosis by suppressing caspase activation and cytochrome c release. LPA increased phosphatidylinositol 3-kinase (PI3K)-dependent Akt activation, cellular FLICE-inhibitory protein (cFLIP) expression, and Bad phosphorylation, resulting in inhibition of caspase-8 activation and Bad translocation to mitochondria. The antiapoptotic effect of LPA was abrogated by PI3K inhibitor, transfection with dominant-negative Akt, and specific downregulation of cFLIP expression using siRNA and further increased by siRNA-mediated suppression of Bad expression. Moreover, sera from ovarian cancer patients showed more protective effect against TRAIL-induced apoptosis than those from healthy donors, and this protection was suppressed by PI3K inhibitor. Our results indicate that albumin-bound LPA and S1P prevent TRAIL-induced apoptosis by upregulation of cFLIP expression and in part by Bad phosphorylation, through the activation of PI3K/Akt pathway.  相似文献   

5.
In the present study, we have investigated the effects of PI3K/Akt pathway on the response of human leukemia cells to fludarabine. Inhibition of PI3K/Akt pathway with a selective inhibitor (e.g., LY294002, or wortmannin) in leukemic cells markedly potentiated fludarabine-induced apoptosis. Inhibition of the PI3K/Akt downstream target mTOR by rapamycin also significantly enhanced fludarabine-induced apoptosis. The co-treatment of fludarabine/LY294002 resulted in significant attenuation in the levels of both phospho-Erk1/2 and phospho-Akt, as well as a marked increase in the level of phospho-JNK. The broad spectrum caspase inhibitor BOC-D-fmk markedly blocked fludarabine/LY-induced apoptosis, had no effect on cytochrome c release to the cytosol, and did abrogate caspase and PARP cleavage. This indicates that mitochondrial dysfunction is upstream of the caspase cascade. Moreover, constitutive activation of the MEK/Erk pathway completely blocked apoptosis induced by the combination of fludarabine/LY294002. Additionally, either constitutive activation of Akt or blockage of the JNK pathway significantly diminished apoptosis induced by the combination. Collectively, these findings demonstrate that inactivation of MAPK, Akt, and activation of the JNK pathway contributes to the induction of apoptosis induced by fludarabine/LY. Comparatively, MAPK inactivation plays a crucial role in fludarabine/LY-induced apoptosis. These results also strongly suggest that combining fludarabine with an inhibitor of the PI3K/Akt/mTOR pathway may represent a novel therapeutic strategy for hematological malignancies.  相似文献   

6.
In the present study we focused in the PI3K/Akt pathway which plays a key role in neuronal survival. Here we show that inhibition of PI3K/Akt by means of LY294002 induces apoptosis via a caspase-dependent and calpain-independent pathway in cerebellar granule neurons (CGNs). This finding was confirmed using zVAD-fmk, a widely caspase inhibitor that prevents apoptosis. For this purpose, we compared two models of apoptosis in CGNs, namely inhibition of PI3K/Akt, and serum potassium deprivation (S/K deprivation). In contrast to the S/K deprivation model, caspase-3 was not activated when PI3K is inhibited. Likewise, CDK5 activation was not involved in this apoptotic process, because calpain activation is responsible for the formation of CDK5/p25 neurotoxic form. However, S/K deprivation activated calpain, as it is shown by α-spectrin breakdown, and favoured the formation of CDK5/p25. Moreover, although PI3K/Akt inhibition enhanced pRbser780 phosphorylation, no increase in the expression of cell-cycle proteins, namely: cyclin D, cyclin E, CDK2 or CDK4, was detected. Furthermore, BrdU incorporation assay did not shown any increase in DNA synthesis. Likewise, PI3K/Akt inhibition increased GSK3β activity and c-Jun phosphorylation, which implicates these two pathways in this apoptotic route. Although previous reports suggest that apoptosis induced in CGNs by LY294002 and S/K deprivation causes PI3K inhibition and increases GSK3β activity and c-Jun phosphorylation activation, our results demonstrate substantial differences between them and point to a key role of GSK3β in the apoptosis induced in CGNs in the two models tested.  相似文献   

7.
Fibrillogenic human amylin elicits pancreatic beta-cell apoptosis that may contribute to development of type-2 diabetes. Here, we demonstrated that activation of a caspase cascade is necessary for induction of apoptosis by fibrillogenic amylin variants in two pancreatic beta-cell lines. Human amylin, as well as truncated 8-37human amylin, evoked sequential activation of caspases-8 and -3, and apoptosis, whereas non-beta-sheet forming and non-fibrillogenic homologs, such as [25,28,29triprolyl]human amylin, did not, implying that the beta-sheet conformer is required for human amylin-induced caspase activation. Significant inhibition of apoptosis was evoked by a selective caspase-1 inhibitor, indicating that caspase-1 is also essential for activation of the caspase cascade. Furthermore, we showed that specific jnk1 antisense oligonucleotides, which suppress phospho-JNK1 expression, effectively decreased human amylin-induced activation of c-Jun. Studies of the interplay between the caspase cascade and the JNK pathway showed that both apoptosis and caspase-3 activation were suppressed by treatment with a JNK inhibitor and by transfection of antisense jnk1 oligonucleotides or antisense-c-jun, whereas a selective inhibitor of caspases-1 and -3 prevented apoptosis but not c-Jun activation. Thus, the JNK1 activation preceded activation of caspases-1 and -3. However, selective JNK inhibition had no effect on caspase-8 activation, and selective caspase-8 inhibition only partially suppressed apoptosis and c-Jun activation, indicating that caspase-8 may partially act upstream of the JNK pathway. Our studies demonstrate a functional interaction of a caspase cascade and JNK1. Fibrillogenic amylin can evoke a JNK1-mediated apoptotic pathway, which is partially dependent and partially independent of caspase-8, and in which caspase-3 acts as a common downstream effector.  相似文献   

8.
The induction of apoptosis in keratinocytes by ultraviolet (UV)-irradiation is considered to be a protective function against skin cancer. UV-induced DNA damage is a crucial event in UVB- and UVC-mediated apoptosis. However, the differences between the UVB- and UVC-induced apoptotic pathways remain unclear. Here we examine the differential mechanisms by which UVB and UVC irradiations induce keratinocyte apoptosis using human keratinocyte HaCaT cells. Differences in the production of (6-4)photoproducts ((6-4)PPs) and cyclobutane pyrimidine dimers (CPDs) were measured following irradiation with UVB and UVC at doses causing the same extent of apoptotic cell death. In addition, main apoptotic features, such as caspase activation and its regulation, were compared between UVB- and UVC-induced apoptosis. Exposures of 500 J/m2 UVB and 100 J/m2 UVC resulted in apoptosis to almost the same extent. At these apoptotic doses, the amounts of both (6-4)PPs and CPDs were significantly larger in the case of UVC irradiation than UVB irradiation; in parallel, the release of cytochrome c and Smac/DIABLO and the activation of caspases-9 following UVC irradiation were greater than after UVB irradiation. Importantly, caspase-8 activation occurred only in UVB-irradiated cells. Furthermore, the activation of caspase-8 was not inhibited by caspases-9 and -3 specific tetrapeptide inhibitors, indicating that the caspase-8 cleavage is not due to feedback from activation of caspases-9 and -3. Thus, these results clearly suggest that the reason apoptosis is induced to the same extent by UVB irradiation as by UVC irradiation, despite the lower production of photoproducts in DNA by UVB irradiation, is attributable to the additional activation of the caspase-8 pathway. Thus, UVB irradiation induces apoptosis through both mitochondrial (intrinsic) and caspase-8 activation (extrinsic) pathways, while UVC induces apoptosis only via the intrinsic pathway.  相似文献   

9.
Interferon-gamma (IFN-gamma) induces various apoptosis-related proteins, including Fas antigen (Fas) in keratinocytes. Ultraviolet B (UVB) irradiation produces "sunburn cells," a specific type of apoptosis. Previously, we reported that IFN-gamma augments Fas-dependent apoptosis of SV40-transformed human keratinocytes (SVHK cells). Caspases are a new class of cysteine proteinases that play an important role in apoptosis. We investigated the mechanism of UVB-induced apoptosis by examining activation of the caspase cascade. UVB irradiation of SVHK cells increased the activities of caspases 1, 3, and 8, which were detected at 3 h, and peak activities occurred at 6 h. Pretreatment of SVHK cells with IFN-gamma significantly increased the activity of caspases 1, 3, and 8. UVB-induced caspase 8 stimulation was significantly suppressed only by caspase 8 inhibitor, while inhibitors of caspases 1, 3, and 8 significantly suppressed UVB-induced caspase 1 stimulation. Caspase 3 and 8 inhibitors, but not caspase 1 inhibitor, significantly suppressed UVB-induced caspase 3 activity, suggesting sequential activation of caspases 8, 3, and 1 in UVB-irradiated SVHK cells. Cross-linking and immunoprecipitation analyses showed multimerization of Fas antigen following UVB irradiation of SVHK cells. Pretreatment of SVHK cells with IFN-gamma significantly augmented UVB-induced apoptosis that was accompanied by increased Fas expression. The susceptibility to UVB-induced apoptosis was also increased in Fas-transfected SVHK cells (F2 cells). Neutralizing anti-Fas antibody significantly suppressed caspase activation and Fas-dependent apoptosis of SVHK cells and F2 cells. In contrast, UVB-induced caspase activation and apoptosis were not inhibited by neutralizing anti-Fas antibody in both cell lines. Our results suggest that UVB directly activates Fas and subsequent caspase cascade resulting in apoptosis of SVHK cells. Furthermore, the expression level of Fas antigen in keratinocytes influenced their susceptibility to UVB-induced apoptosis.  相似文献   

10.
Nerve growth factor (NGF) is well characterised as an important pro-survival factor in neuronal cells that can inhibit apoptotic cell death upstream of mitochondrial outer membrane permeabilisation. Here we addressed the question of whether NGF can also protect against apoptosis downstream of caspase activation. NGF treatment promoted a rapid reduction in the level of the p17 subunit of active caspase-3 in PC12 cells that had been induced to undergo apoptosis by various cytotoxins. The mechanism involved TrkA-dependent activation of extracellular signal-regulated kinase (ERK1/2) but not phosphatidylinositol 3-kinase (PI3K)/Akt, and de novo protein synthesis. Involvement of inhibitor of apoptosis proteins (IAPs) and proteasomal degradation were ruled out. In contrast, inhibition of lysosome function using chloroquine and concanamycin A reversed NGF-induced removal of p17. Moreover, in NGF-treated cells, active caspases were found to be localised to lysosomes. The involvement of macroautophagy and chaperone-mediated autophagy were ruled out. Taken together, these findings suggest an anti-apoptotic mechanism by which NGF induces removal of active caspase-3 in a lysosome-dependent manner.  相似文献   

11.
Midkine (MK) is a new member of the heparin-binding neurotrophic factor family. MK plays important roles in development and carcinogenesis and has several important biological effects, including promotion of neurite extension and neuronal survival. However, the mechanism by which MK exerts its neurotrophic actions on neurons has not been elucidated to date. We have established an apoptosis induction system by serum deprivation in primary neuronal cultures isolated from mouse cerebral cortices. Neuronal apoptosis induced by serum deprivation was accompanied by the activation of caspase-3. MK, when added into the culture medium, inhibited the induction of apoptosis and activation of caspase-3 in a dose-dependent manner. Extracellular signal-regulated kinase (ERK) and Akt were not activated by serum deprivation, whereas ERK and Akt were rapidly activated by addition of MK. In addition, the trophic actions of MK of suppressing apoptosis and suppressing the activation of caspase-3 were abolished by concomitant treatment with PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, and with wort-mannin or LY294002, specific inhibitors of phosphatidyl-inositol 3-kinase (PI 3-kinase). These PI 3-kinase inhibitors also inhibited the activation of ERK in response to MK, demonstrating a link between ERK and the caspase-3 pathway that is modulated by the PI 3-kinase activation. These results indicate that the ERK cascade plays a central role in MK-mediated neuronal survival via inhibition of caspase-3 activation.  相似文献   

12.
13.

Background

Thimerosal, a mercury-containing preservative, is one of the most widely used preservatives and found in a variety of biological products. Concerns over its possible toxicity have reemerged recently due to its use in vaccines. Thimerosal has also been reported to be markedly cytotoxic to neural tissue. However, little is known regarding thimerosal-induced toxicity in muscle tissue. Therefore, we investigated the cytotoxic effect of thimerosal and its possible mechanisms on mouse C2C12 myoblast cells.

Methodology/Principal Findings

The study showed that C2C12 myoblast cells underwent inhibition of proliferation and apoptosis after exposure to thimerosal (125–500 nM) for 24, 48 and 72 h. Thimerosal caused S phase arrest and induced apoptosis as assessed by flow cytometric analysis, Hoechst staining and immunoblotting. The data revealed that thimerosal could trigger the leakage of cytochrome c from mitochondria, followed by cleavage of caspase-9 and caspase-3, and that an inhibitor of caspase could suppress thimerosal-induced apoptosis. Thimerosal inhibited the phosphorylation of Aktser473 and survivin expression. Wortmannin, a PI3K inhibitor, inhibited Akt activity and decreased survivin expression, resulting in increased thimerosal-induced apoptosis in C2C12 cells, while the activation of PI3K/Akt pathway by mIGF-I (50 ng/ml) increased the expression of survivin and attenuated apoptosis. Furthermore, the inhibition of survivin expression by siRNA enhanced thimerosal-induced cell apoptosis, while overexpression of survivin prevented thimerosal-induced apoptosis. Taken together, the data show that the PI3K/Akt/survivin pathway plays an important role in the thimerosal-induced apoptosis in C2C12 cells.

Conclusions/Significance

Our results suggest that in C2C12 myoblast cells, thimerosal induces S phase arrest and finally causes apoptosis via inhibition of PI3K/Akt/survivin signaling followed by activation of the mitochondrial apoptotic pathway.  相似文献   

14.
When PC12 cells are deprived of trophic support they undergo apoptosis. We have previously shown that survival of trophic factor-deprived PC12M1 cells can be promoted by activation of the G protein-coupled muscarinic receptors. The mechanism whereby muscarinic receptors inhibit apoptosis is poorly understood. In the present study we investigated this mechanism by examining the effect of muscarinic receptor activation on the serum deprivation-induced activity of key players in apoptosis, the caspases, in PC12M1 cells. The results showed that m1 muscarinic activation inhibits caspase activity induced by serum deprivation. This effect appeared to be caused by the prevention of activation of caspases such as caspase-2 and caspase-3, and not by the inhibition of existing activity. Muscarinic receptor activation also stimulated the mitogen-activated protein kinase/extracellular signaling-regulated kinase (MAPK/ERK) and phosphoinositide (PI) 3-kinase signaling pathways. The PI 3-kinase pathway inhibitors wortmannin and LY294002, as well as the MAPK/ERK pathway PD98059 inhibitor, did not however suppress the inhibitory effect of the muscarinic receptors on caspase activity. The results therefore suggested that the muscarinic survival effect is mediated by a pathway that leads to caspase inhibition by MAPK/ERK- and PI 3-kinase-independent signaling cascades.  相似文献   

15.
In bone, a large proportion of osteoblasts, the cells responsible for deposition of new bone, normally undergo programmed cell death (apoptosis). Because mechanical loading of bone increases the rate of new bone formation, we hypothesized that mechanical stimulation of osteoblasts might increase their survival. To test this hypothesis, we investigated the effects of fluid shear stress (FSS) on osteoblast apoptosis using three osteoblast cell types: primary rat calvarial osteoblasts (RCOB), MC3T3-E1 osteoblastic cells, and UMR106 osteosarcoma cells. Cells were treated with TNF-alpha in the presence of cyclohexamide (CHX) to rapidly induce apoptosis. Osteoblasts showed significant signs of apoptosis within 4-6 h of exposure to TNF-alpha and CHX, and application of FSS (12 dyne/cm(2)) significantly attenuated this TNF-alpha-induced apoptosis. FSS activated PI3-kinase signaling, induced phosphorylation of Akt, and inhibited TNF-alpha-induced activation of caspase-3. Inhibition of PI3-kinase, using LY294002, blocked the ability of FSS to rescue osteoblasts from TNF-alpha-induced apoptosis and blocked FSS-induced inhibition of caspase-3 activation in osteoblasts treated with TNF-alpha. LY294002 did not, however, prevent FSS-induced phosphorylation of Akt suggesting that activation of Akt alone is not sufficient to rescue cells from apoptosis. This result also suggests that FSS can activate Akt via a PI3-kinase-independent pathway. These studies demonstrate for the first time that application of FSS to osteoblasts in vitro results in inhibition of TNF-alpha-induced apoptosis through a mechanism involving activation of PI3-kinase signaling and inhibition of caspases. FSS-induced activation of PI3-kinase may promote cell survival through a mechanism that is distinct from the Akt-mediated survival pathway.  相似文献   

16.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

17.
Kim HJ  Kang SK  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2003,555(2):217-222
Vitamin K-related analogs induce growth inhibition via a cell cycle arrest through cdc25A phosphatase inhibition in various cancer cell lines. We report that 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDN), a naphthoquinone analog, induces mitochondria-dependent apoptosis in human promyelocytic leukemia HL-60 cells. DDN induced cytochrome c release, Bax translocation, cleavage of Bid and Bad, and activation of caspase-3, -8, -9 upon the induction of apoptosis. Cleavage of Bid, the caspase-8 substrate, was inhibited by the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk), whereas cytochrome c release was not affected, suggesting that activation of caspase-8 and subsequent Bid cleavage occur downstream of cytochrome c release. DDN inhibited the activation of Akt detected by decreasing level of phosphorylation. Overexpression of constitutively active Akt protected cells from DDN-induced apoptosis, while dominant negative Akt moderately enhanced cell death. Furthermore, Akt prevented release of cytochrome c and cleavage of Bad in DDN-treated HL-60 cells. Taken together, DDN-induced apoptosis is associated with mitochondrial signaling which involves cytochrome c release via a mechanism inhibited by Akt.  相似文献   

18.
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in a variety of cells, but the mechanism of this effect has not been fully elucidated. We report that diclofenac, a NSAID, induces growth inhibition and apoptosis of HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS), Akt, caspase-8, and Bid. ROS generation occurs in an early stage of diclofenac-induced apoptosis preceding cytochrome c release, caspase activation, and DNA fragmentation. N-Acetyl-L-cysteine, an antioxidant, suppresses ROS generation, Akt inactivation, caspase-8 activation, and DNA fragmentation. Cyclic AMP, an inducer of Akt phosphorylation, suppresses Akt inactivation, Bid cleavage, and DNA fragmentation. LY294002, a PI3 kinase inhibitor, enhances Akt inactivation and DNA fragmentation. Ac-IETD-CHO, a caspase-8 inhibitor, suppresses Bid cleavage and DNA fragmentation. z-VAD-fmk, a universal caspase inhibitor, but not cyclosporin A (CsA), an inhibitor of mitochondrial membrane permeability transition, suppresses DNA fragmentation. These results suggest the sequential mechanism of diclofenac-induced apoptosis of HL-60 cells: ROS generation suppresses Akt activity, thereby activating caspase-8, which stimulates Bid cleavage and induces cytochrome c release and the activation of caspase-9 and-3 in a CsA-insensitive mechanism. Furthermore, we found that 2-methoxyestradiol (2-ME), a superoxide dismutase inhibitor, significantly enhances diclofenac-induced apoptosis; that is, diclofenac combined with 2-ME may have therapeutic potential in the treatment of human leukemia.  相似文献   

19.
The role of protein kinases in the inhibition of TNF-alpha associated apoptosis of human neutrophils by crystals of calcium pyrophosphate dihydrate (CPPD) (25 mg/ml) was investigated. We monitored the activities of the p44 extracellular signal-regulated kinase 1 (ERK1) and p42 ERK2 mitogen-activated protein (MAP) kinases and phosphatidylinositol 3-kinase (PI3-K)-regulated protein kinase B (Akt) in neutrophils incubated with TNF-alpha and CPPD crystals, separately and in combination, in parallel with the endogenous caspase 3 activity and DNA fragmentation. CPPD crystals were observed to induce a robust and transient activation of ERK1, ERK2, and Akt, whereas TNF-alpha produced only a modest and delayed activation of Akt. In the presence of TNF-alpha, Akt activity was enhanced, and CPPD crystal-induced activation of ERK1 and ERK2 was more sustained than with CPPD crystals alone, but TNF-alpha itself reduced the basal phosphotransferase activities of these MAP kinases. Preincubation with the MAP kinase kinase (MEK1) inhibitors PD98059 (20 ng/ml) and U0126 (250 nM), or the PI3-K inhibitors wortmannin (100 nM) and LY294002 (50 microM) repressed the activation of ERK1, ERK2, and Akt in association with CPPD crystal incubation, in the absence or presence of TNF-alpha. Furthermore, the inhibition of the Mek1/Mek2-->ERK1/ERK2 or PI3-K/Akt pathways reversed CPPD crystal-associated suppression of TNF-alpha-induced caspase 3 activation and neutrophil apoptosis. Together, these results indicate that CPPD crystals function to induce acute inflammatory responses through ERK1/ERK2 and PI3-K/Akt-mediated stimulation of neutrophil activation and repression of apoptosis.  相似文献   

20.
In this study, we investigated the signalling pathways induced by ultraviolet B (UVB) and the effects of sphingosine-1-phosphate on UVB-induced apoptosis of mouse melanocytes, Mel-Ab, and observed the cytoprotective effects of sphingosine-1-phosphate on UVB-induced apoptosis. Since sphingosine-1-phosphate is a well-known mitogenic agent, we thought it possible that the mitogenic effect of sphingosine-1-phosphate might contribute to cell survival. However, we found that sphingosine-1-phosphate significantly inhibits DNA synthesis. We next examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by sphingosine-1-phosphate against UVB-induced apoptosis. UVB irradiation resulted in the remarkable and sustained activation of c-Jun N-terminal kinase (JNK), while p38 MAP kinase was only transiently activated. The basal level of extracellular signal-regulated protein kinase (ERK) phosphorylation decreased 30 min after UVB irradiation, whereas the basal level of Akt phosphorylation was unaffected by UVB. We also found that sphingosine-1-phosphate potently stimulates the phosphorylation of both ERK and Akt, which are involved in the cell survival-signalling cascade. Furthermore, the specific inhibition of the ERK and Akt pathways by PD98059 and LY294002, respectively, restored the cytoprotective effect induced by sphingosine-1-phosphate. On the other hand, the p38 inhibitor SB203580 additively enhanced the cytoprotective effect on sphingosine-1-phosphate. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that sphingosine-1-phosphate probably exert its cytoprotective effect in Mel-Ab cells through ERK and Akt activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号